Advertisement

Annals of Biomedical Engineering

, Volume 35, Issue 10, pp 1678–1686 | Cite as

A Local Adaptive Threshold Strategy for High Resolution Peripheral Quantitative Computed Tomography of Trabecular Bone

  • Andrew J. Burghardt
  • Galateia J. Kazakia
  • Sharmila Majumdar
Article

Abstract

High resolution peripheral quantitative computed tomography (HR-pQCT) is a promising method for detailed in vivo 3D characterization of the densitometric, geometric, and microstructural features of human bone. Currently, a hybrid densitometric, direct, and plate model-based calculation is used to quantify trabecular microstructure. In the present study, this legacy methodology is compared to direct methods derived from a new local thresholding scheme independent of densitometric and model assumptions.

Human femoral trabecular bone samples were acquired from patients undergoing hip replacement surgery. HR-pQCT (82 μm isotropic voxels) and micro-tomography (16 μm isotropic voxels) images were acquired. HR-pQCT images were segmented and analyzed in three ways: (1) using the hybrid method provided by the manufacturer based on a fixed global threshold, (2) using direct 3D methods based on the fixed global threshold segmentation, and (3) using direct 3D methods based on a novel local threshold scheme. The results were compared against standard direct 3D indices from μCT analysis.

Standard trabecular parameters determined by HR-pQCT correlated strongly to μCT. BV/TV and Tb.Th were significantly underestimated by the hybrid method and significantly overestimated by direct methods based on the global threshold segmentation while the local method yielded optimal intermediate results. The direct-local method also performed favorably for Tb.N (R 2 = 0.85 vs. R 2 = 0.70 for direct-global method) and Tb.Sp (R 2 = 0.93 vs. R 2 = 0.85 for the hybrid method and R 2 = 0.87 for the direct-global method).

These results indicate that direct methods, with the aid of advanced segmentation techniques, may yield equivalent or improved accuracy for quantification of trabecular bone microstructure without relying on densitometric or model assumptions.

Keywords

High resolution peripheral quantitative computed tomography Micro-tomography Trabecular bone Threshold Image processing 

Notes

Acknowledgments

The authors would like to acknowledge funding support from NIH RO1 AG17762 (SM). Furthermore, they would like to thank Dr. Andres Laib and Scanco Medical AG for providing software development consultation and for providing an API for IPL (Image Processing Language, Scanco Medical AG, Bassersdorf, Switzerland). They would also like to thank Dr. Michael Ries of the UCSF Department of Orthopaedic Surgery for providing the tissue used in this study.

References

  1. 1.
    Boivin G. Y., Chavassieux P. M., Santora A. C., Yates J., Meunier P. J. (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5):687–694PubMedCrossRefGoogle Scholar
  2. 2.
    Boutroy S., Bouxsein M. L., Munoz F., Delmas P. D. (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90(12):6508–6515PubMedCrossRefGoogle Scholar
  3. 3.
    Canny J. (1986) A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679–698Google Scholar
  4. 4.
    David V., Laroche N., Boudignon B., Lafage-Proust M. H., Alexandre C., Ruegsegger P., Vico L. (2003) Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J. Bone Miner. Res. 18(9):1622–1631PubMedCrossRefGoogle Scholar
  5. 5.
    Ding M., Hvid I. (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26(3):291–295PubMedCrossRefGoogle Scholar
  6. 6.
    Gasser J. A., Ingold P., Grosios K., Laib A., Hammerle S., Koller B. (2005) Noninvasive monitoring of changes in structural cancellous bone parameters with a novel prototype micro-CT. J. Bone Miner. Metab. 23(Suppl):90–96PubMedCrossRefGoogle Scholar
  7. 7.
    Harrigan T. P., Mann R. W. (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19:761–767CrossRefGoogle Scholar
  8. 8.
    Hildebrand T., Laib A., Muller R., Dequeker J., Ruegsegger P. (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14(7):1167–1174PubMedCrossRefGoogle Scholar
  9. 9.
    Hildebrand T., Ruegsegger P. (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185:67–75CrossRefGoogle Scholar
  10. 10.
    Hildebrand T., Ruegsegger P. (1997) Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1(1):15–23CrossRefGoogle Scholar
  11. 11.
    Khosla S., Riggs B. L., Atkinson E. J., Oberg A. L., McDaniel L. J., Holets M., Peterson J. M., Melton L. J. III (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21(1):124–131PubMedCrossRefGoogle Scholar
  12. 12.
    Lai Y. M., Qin L., Hung V. W., Choy W. Y., Chan S. T., Chan L. W., Chan K. M. (2006) Trabecular bone status in ultradistal tibia under habitual gait loading: a pQCT study in postmenopausal women. J. Clin. Densitom. 9(2):175–183PubMedCrossRefGoogle Scholar
  13. 13.
    Laib A., Beuf O., Issever A., Newitt D. C., Majumdar S. (2001) Direct measures of trabecular bone architecture from MR images. Adv. Exp. Med. Biol. 496:37–46PubMedGoogle Scholar
  14. 14.
    Laib A., Hauselmann H. J., Ruegsegger P. (1998) In vivo high resolution 3D-QCT of the human forearm. Technol. Health Care 6(5–6):329–337PubMedGoogle Scholar
  15. 15.
    Laib A., Newitt D. C., Lu Y., Majumdar S. (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos. Int. 13(2):130–136PubMedCrossRefGoogle Scholar
  16. 16.
    Laib A., Ruegsegger P. (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24(1):35–39PubMedCrossRefGoogle Scholar
  17. 17.
    Laib A., Ruegsegger P. (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput. Med. Imaging Graph. 23(2):69–74PubMedCrossRefGoogle Scholar
  18. 18.
    Macneil, J. A. and S. K. Boyd. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. Jan 15, 2007Google Scholar
  19. 19.
    Muller R., Ruegsegger P. (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inform. 40:61–79PubMedGoogle Scholar
  20. 20.
    Odgaard A., Gundersen H. J. (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14(2):173–182PubMedCrossRefGoogle Scholar
  21. 21.
    Parfitt A. M., Drezner M. K., Glorieux F. H., Kanis J. A., Malluche H., Meunier P. J., Ott S. M., Recker R. R. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2(6):595–610PubMedCrossRefGoogle Scholar
  22. 22.
    Pistoia W., van Rietbergen B., Laib A., Ruegsegger P. (2001) High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone. J. Biomech. Eng. 123(2):176–183PubMedCrossRefGoogle Scholar
  23. 23.
    Pistoia W., van Rietbergen B., Lochmuller E. M., Lill C. A., Eckstein F., Ruegsegger P. (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848PubMedCrossRefGoogle Scholar
  24. 24.
    Pistoia W., van Rietbergen B., Ruegsegger P. (2003) Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone 33(6):937–945PubMedCrossRefGoogle Scholar
  25. 25.
    Ruegsegger P., Koller B., Muller R. (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58(1):24–29PubMedCrossRefGoogle Scholar
  26. 26.
    Ulrich D., van Rietbergen B., Laib A., Ruegsegger P. (1999) Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging. J. Biomech. 32(8):821–828PubMedCrossRefGoogle Scholar
  27. 27.
    Ulrich D., van Rietbergen B., Laib A., Ruegsegger P. (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25(1):55–60PubMedCrossRefGoogle Scholar
  28. 28.
    van Rietbergen B., Majumdar S., Pistoia W., Newitt D. C., Kothari M., Laib A., Ruegsegger P. (1998) Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol. Health Care. 6(5–6):413–420PubMedGoogle Scholar
  29. 29.
    Waarsing J. H., Day J. S., Weinans H. (2004) An improved segmentation method for in vivo microCT imaging. J. Bone Miner. Res. 19(10):1640–1650PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Andrew J. Burghardt
    • 1
  • Galateia J. Kazakia
    • 1
  • Sharmila Majumdar
    • 1
  1. 1.Musculoskeletal Quantitative Imaging Research Group, Department of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations