Advertisement

Annals of Biomedical Engineering

, Volume 35, Issue 10, pp 1657–1667 | Cite as

Non-Invasive Time-Lapsed Monitoring and Quantification of Engineered Bone-Like Tissue

  • Henri Hagenmüller
  • Sandra Hofmann
  • Thomas Kohler
  • Hans P. Merkle
  • David L. Kaplan
  • Gordana Vunjak-Novakovic
  • Ralph Müller
  • Lorenz MeinelEmail author
Article

Abstract

The formation of bone-like tissue from human mesenchymal stem cells (hMSC) cultured in osteogenic medium on silk fibroin scaffolds was monitored and quantified over 44 days in culture using non-invasive time-lapsed micro-computed tomography (μCT). Each construct was imaged nine times in situ. From μCT imaging, detailed morphometrical data on bone volume density, surface-to-volume ratio, trabecular thickness, trabecular spacing, and the structure model index and tissue mineral density were obtained. μCT irradiation did not impact the osteogenic performance of hMSCs based on DNA content, alkaline phosphatase activity, and calcium deposition when compared to non-exposed control samples. Bone-like tissue formation initiated at day 10 of the culture with the deposition of small mineralized clusters. Tissue mineral density increased linearly over time. The surface-to-volume ratio of the bone-like tissues converged asymptotically to 26 mm−1. Although in vitro formation of bone-like tissue started from clusters, the overall bone volume was not predictable from the time, number, and size of initially formed bone-like clusters. Based on microstructural analysis, the morphometry of the tissue-engineered constructs was found to be in the range of human trabecular bone. In future studies, non-invasive, time-lapsed monitoring may enable researchers to culture tissues in vitro, right until the development of a desired morphology is accomplished. Our data demonstrate the feasibility of qualitatively and quantitatively detailing the spatial and temporal mineralization of bone-like tissue formation in tissue engineering.

Keywords

Tissue engineering Bone Micro-computed tomography Human mesenchymal stem cells Silk Scaffold 

Notes

Acknowledgments

Financial support from ETH Zurich (TH 26.04-1), the Association for Orthopedic Research (AFOR), and the NIH Tissue Engineering Resource Center are greatly appreciated. We thank Dr. Martin Stauber for help in AVS illustration, Trudel Inc. for silk cocoons, and Wyeth Biopharmaceuticals for BMP-2 supply.

References

  1. 1.
    Alsberg E., E. E. Hill, D. J. Mooney. Craniofacial tissue engineering. Crit. Rev. Oral Biol. Med. 12:64–75, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Asakura A., M. Komaki, M. Rudnicki. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253, 2001PubMedCrossRefGoogle Scholar
  3. 3.
    Beetz A., G. Messer, T. Oppel, D. van Beuningen, R. U. Peter, P. Kind. Induction of interleukin 6 by ionizing radiation in a human epithelial cell line: control by corticosteroids. Int. J. Radiat. Biol. 72:33–43, 1997PubMedCrossRefGoogle Scholar
  4. 4.
    Cartmell S., K. Huynh, A. Lin, S. Nagaraja, R. Guldberg. Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro. J. Biomed. Mater. Res. A 69:97–104, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Demarteau O., D. Wendt, A. Braccini, M. Jakob, D. Schafer, M. Heberer, I. Martin. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem. Biophys. Res. Commun. 310:580–588, 2003PubMedCrossRefGoogle Scholar
  6. 6.
    Enomoto A., N. Suzuki, Y. Kang, K. Hirano, Y. Matsumoto, J. Zhu, A. Morita, Y. Hosoi, K. Sakai, H. Koyama. Decreased c-Myc expression and its involvement in X-ray-induced apoptotic cell death of human T-cell leukaemia cell line MOLT-4. Int. J. Radiat. Biol. 79:589–600, 2003PubMedCrossRefGoogle Scholar
  7. 7.
    Freyria A. M., Y. Yang, H. Chajra, C. F. Rousseau, M. C. Ronziere, D. Herbage, A. J. El Haj. Optimization of dynamic culture conditions: effects on biosynthetic activities of chondrocytes grown in collagen sponges. Tissue Eng. 11:674–684, 2005PubMedCrossRefGoogle Scholar
  8. 8.
    Hallahan D. E., E. Dunphy, J. Kuchibhotla, A. Kraft, T. Unlap, R. R. Weichselbaum. Prolonged c-jun expression in irradiated ataxia telangiectasia fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 36:355–360, 1996PubMedCrossRefGoogle Scholar
  9. 9.
    Hildebrand T., A. Laib, R. Müller, J. Dequeker, P. Rüegsegger. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14:1167–1174, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Hildebrand T., P. Ruegsegger. Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1:15–23, 1997CrossRefGoogle Scholar
  11. 11.
    Hofmann S., H. Hagenmuller, A. M. Koch, R. Muller, G. Vunjak-Novakovic, D. L. Kaplan, H. P. Merkle, L. Meinel. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28:1152–1162, 2007PubMedCrossRefGoogle Scholar
  12. 12.
    Hollinger J. O., S. Winn, J. Bonadio. Options for tissue engineering to address challenges of the aging skeleton. Tissue Eng. 6:341–350, 2000PubMedCrossRefGoogle Scholar
  13. 13.
    Ishaug S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17–28, 1997PubMedCrossRefGoogle Scholar
  14. 14.
    Ishaug-Riley S. L., G. M. Crane-Kruger, M. J. Yaszemski, A. G. Mikos. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412, 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Karageorgiou, V., M. Tomkins, R. Fajardo, L. Meinel, B. Snyder, K. Wade, J. Chen, G. Vunjak-Novakovic, D. L. Kaplan. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J. Biomed. Mater. Res. A 78:324–334, 2006PubMedGoogle Scholar
  16. 16.
    Martin I., D. Wendt, M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86, 2004PubMedCrossRefGoogle Scholar
  17. 17.
    Meinel L., R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, D. Kaplan. Silk implants for the healing of critical size bone defects. Bone 37:688–698, 2005PubMedCrossRefGoogle Scholar
  18. 18.
    Meinel L., S. Hofmann, O. Betz, R. Fajardo, H. P. Merkle, R. Langer, C. H. Evans, G. Vunjak-Novakovic, D. L. Kaplan. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 27:4993–5002, 2006PubMedCrossRefGoogle Scholar
  19. 19.
    Meinel L., V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, G. Vunjak-Novakovic. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann. Biomed. Eng. 32:112–122, 2004PubMedCrossRefGoogle Scholar
  20. 20.
    Meinel L., V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, D. L. Kaplan. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J. Biomed. Mater. Res. A 71:25–34, 2004PubMedCrossRefGoogle Scholar
  21. 21.
    Müller R., T. Hildebrand, P. Rüegsegger. Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39:145–164, 1994PubMedCrossRefGoogle Scholar
  22. 22.
    Müller R., P. Rüegsegger. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inform. 40:61–79, 1997PubMedGoogle Scholar
  23. 23.
    Nazarov R., H. J. Jin, D. L. Kaplan. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726, 2004PubMedCrossRefGoogle Scholar
  24. 24.
    Neuhof D., A. Ruess, F. Wenz, K. J. Weber. Induction of telomerase activity by irradiation in human lymphoblasts. Radiat. Res. 155:693–697, 2001PubMedCrossRefGoogle Scholar
  25. 25.
    Pittenger M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999PubMedCrossRefGoogle Scholar
  26. 26.
    Risbud M. V., M. Sittinger. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol. 20:351–356, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Ritman E. L. Micro-computed tomography-current status and developments. Annu. Rev. Biomed. Eng. 6:185–208, 2004PubMedCrossRefGoogle Scholar
  28. 28.
    Rogakou E. P., C. Boon, C. Redon, W. M. Bonner. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146:905–916, 1999PubMedCrossRefGoogle Scholar
  29. 29.
    Rüegsegger P., B. Koller, R. Müller. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58:24–29, 1996PubMedCrossRefGoogle Scholar
  30. 30.
    Seifert B., G. Mihanetzis, T. Groth, W. Albrecht, K. Richau, Y. Missirlis, D. Paul, G. von Sengbusch. Polyetherimide: a new membrane-forming polymer for biomedical applications. Artif. Organs 26:189–199, 2002PubMedCrossRefGoogle Scholar
  31. 31.
    Sikavitsas V. I., G. N. Bancroft, J. J. Lemoine, M. A. Liebschner, M. Dauner, A. G. Mikos. Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann. Biomed. Eng. 33:63–70, 2005PubMedCrossRefGoogle Scholar
  32. 32.
    Singh H., S. H. Teoh, H. T. Low, D. W. Hutmacher. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119:181–196, 2005PubMedCrossRefGoogle Scholar
  33. 33.
    Vunjak-Novakovic G., L. Meinel, G. Altman, D. Kaplan. Bioreactor cultivation of osteochondral grafts. Orthod. Craniofac. Res. 8:209–218, 2005PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y., U. J. Kim, D. J. Blasioli, H. J. Kim, D. L. Kaplan. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094, 2005PubMedCrossRefGoogle Scholar
  35. 35.
    Washburn N. R., M. Weir, P. Anderson, K. Potter. Bone formation in polymeric scaffolds evaluated by proton magnetic resonance microscopy and X-ray microtomography. J. Biomed. Mater. Res. A 69:738–747, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Henri Hagenmüller
    • 1
    • 2
  • Sandra Hofmann
    • 2
  • Thomas Kohler
    • 1
  • Hans P. Merkle
    • 2
  • David L. Kaplan
    • 3
  • Gordana Vunjak-Novakovic
    • 4
  • Ralph Müller
    • 1
  • Lorenz Meinel
    • 2
    • 3
    Email author
  1. 1.Institute for BiomechanicsETH ZurichZurichSwitzerland
  2. 2.Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
  3. 3.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  4. 4.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations