Annals of Biomedical Engineering

, Volume 35, Issue 9, pp 1585–1594 | Cite as

Cyclic Pressure Stimulates DNA Synthesis through the PI3K/Akt Signaling Pathway in Rat Bladder Smooth Muscle Cells

  • Joshua Stover
  • Jiro Nagatomi


Previous studies demonstrated that the bladder exhibited severe tissue remodeling following spinal cord injury. In such pathological bladders, uninhibited non-voiding contractions subject bladder cells to cyclic oscillations of intravesical pressure. We hypothesize that cyclic pressure is a potential trigger for tissue remodeling in overactive bladder. Using a custom-made setup, rat bladder smooth muscle cells (SMC) in vitro were exposed to cyclic hydrostatic pressure (40 cm H2O) at either 0.1 Hz or 0.02 Hz frequency for up to 24 h. When compared to static control and cells exposed to 0.02-Hz cyclic pressure, SMC exposed to 0.1-Hz cyclic pressure contained significantly (p < 0.05) higher amounts of DNA. We confirmed that the increase in DNA was due to increased cell proliferation, indicated by increased BrdU incorporation, but not due to decreased apoptosis rates in response to cyclic pressure. In addition, significant (p < 0.05) elevation of Akt phosphorylation in SMC following exposure to cyclic pressure and lack of pressure-induced SMC hyperplasia in the presence of PI3K inhibitors, wortmannin and LY294002, indicated the involvement of the PI3K/Akt pathway in the proliferative response of SMC to cyclic pressure. We concluded that chronic exposure to intravesical pressure oscillation may be a potential trigger for bladder tissue remodeling.


Spinal cord injury Hyperreflexia Mechanotransduction Tissue remodeling 



The authors wish to thank Ms. Margaret Gray for assistance with characterization of SMCs and Ms. Cassie Gregory for assistance with cell culture. The authors also wish to thank Dr. Bruce Gao and his laboratory for providing the rats used as source of bladder cells in the present study. The funding for this research was provided by Paralyzed Veterans of America (2289-02) and Clemson University.


  1. 1.
    Abdel-Karim A. M., Abdel-Gawad M., Huynh H., Elhilali M. M. 2002 Modulation of insulin-like growth factor-I system of the bladder using a somatostatin analogue in chronic spinalized rats. J. Urol. 168(3):1253–1258PubMedCrossRefGoogle Scholar
  2. 2.
    Adam R. M., Roth J. A., Cheng H. L., Rice D. C., Khoury J., Bauer S. B., Peters C. A., Freeman M. R. 2003 Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J. Urol. 169(6):2388–2393PubMedCrossRefGoogle Scholar
  3. 3.
    Backhaus B. O., Kaefer M., Haberstroh K. M., Hile K., Nagatomi J., Rink R. C., Cain M. P., Casale A., Bizios R. 2002 Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cm. H2O. J. Urol. 168(6):2600–2604PubMedCrossRefGoogle Scholar
  4. 4.
    Biering-Sorensen F., Bagi P., Hoiby N. 2001 Urinary tract infections in patients with spinal cord lesions: treatment and prevention. Drugs 61(9):1275–1287PubMedCrossRefGoogle Scholar
  5. 5.
    Bommakanti R. K., Vinayak S., Simonds W. F. 2000 Dual regulation of Akt/protein kinase B by heterotrimeric G protein subunits. J. Biol. Chem. 275(49):38870–38876PubMedCrossRefGoogle Scholar
  6. 6.
    Brazil D. P., Hemmings B. A. 2001 Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26(11):657–664PubMedCrossRefGoogle Scholar
  7. 7.
    Chan T. O., Rittenhouse S. E., Tsichlis P. N. 1999 AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68:965–1014PubMedCrossRefGoogle Scholar
  8. 8.
    Chaqour B., Han J. S., Tamura I., Macarak E. 2002 Mechanical regulation of IGF-I and IGF-binding protein gene transcription in bladder smooth muscle cells. J. Cell Biochem. 84(2):264–277PubMedCrossRefGoogle Scholar
  9. 9.
    Chen A. H., Gortler D. S., Kilaru S., Araim O., Frangos S. G., Sumpio B. E. 2001 Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells. Surgery. 130(2):378–381PubMedCrossRefGoogle Scholar
  10. 10.
    Cook S. A., Matsui T., Li L., Rosenzweig A. 2002 Transcriptional effects of chronic Akt activation in the heart. J. Biol. Chem. 277(25):22528–22533PubMedCrossRefGoogle Scholar
  11. 11.
    Cross M. J., Stewart A., Hodgkin M. N., Kerr D. J., Wakelam M. J. 1995 Wortmannin and its structural analogue demethoxyviridin inhibit stimulated phospholipase A2 activity in Swiss 3T3 cells. Wortmannin is not a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 270(43):25352–25355PubMedCrossRefGoogle Scholar
  12. 12.
    Danciu T. E., Adam R. M., Naruse K., Freeman M. R., Hauschka P. V. 2003 Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 536(1–3):193–197PubMedCrossRefGoogle Scholar
  13. 13.
    de Groat W. C. 1995 Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia 33(9):493–505PubMedGoogle Scholar
  14. 14.
    de Groat W. C., Kruse M. N., Vizzard M. A., Cheng C. L., Araki I., Yoshimura N. 1997 Modification of urinary bladder function after spinal cord injury. Adv. Neurol. 72:347–364PubMedGoogle Scholar
  15. 15.
    Deveaud C. M., Macarak E. J., Kucich U., Ewalt D. H., Abrams W. R., Howard P. S. 1998 Molecular analysis of collagens in bladder fibrosis. J. Urol. 160(4):1518–1527PubMedCrossRefGoogle Scholar
  16. 16.
    Djavan B., Lin V., Kaplan E. P., Richier J. C., Shariat S., Marberger M., McConnell J. D. 1998 Decreased elastin gene expression in noncompliant human bladder tissue: a competitive reverse transcriptase-polymerase chain reaction analysis. J. Urol. 160(5):1658–1662PubMedCrossRefGoogle Scholar
  17. 17.
    Duan C., Bauchat J. R., Hsieh T. 2000 Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration. Circ. Res. 86(1):15–23PubMedGoogle Scholar
  18. 18.
    Ewalt D. H., Howard P. S., Blyth B., Snyder H. M., Duckett J. W., Levin R. M., Macarak E. J. 1992 Is lamina propria matrix responsible for normal bladder compliance? J. Urol. 148(2 Pt 2):544–549PubMedGoogle Scholar
  19. 19.
    Farrugia G., Holm A. N., Rich A., Sarr M. G., Szurszewski J. H., Rae J. L. 1999 A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117(4):900–905PubMedCrossRefGoogle Scholar
  20. 20.
    Galvin D. J., Watson R. W., Gillespie J. I., Brady H., Fitzpatrick J. M. 2002 Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am. J. Physiol. Renal Physiol. 283(6):F1192–F1199PubMedGoogle Scholar
  21. 21.
    Gilpin S. A., Gosling J. A., Barnard R. J. 1985 Morphological and morphometric studies of the human obstructed, trabeculated urinary bladder. Br. J. Urol. 57(5):525–529PubMedCrossRefGoogle Scholar
  22. 22.
    Haberstroh K. M., Kaefer M., Bizios R. 2000 Inhibition of pressure induced bladder smooth muscle cell hyperplasia using CRM197. J. Urol. 164(4):1329–1333PubMedCrossRefGoogle Scholar
  23. 23.
    Haberstroh K. M., Kaefer M., Retik A. B., Freeman M. R., Bizios R. 1999 The effects of sustained hydrostatic pressure on select bladder smooth muscle cell functions. J. Urol. 162(6):2114–2118PubMedCrossRefGoogle Scholar
  24. 24.
    Hosokawa H., Aiuchi S., Kambe T., Hagiwara Y., Kubo T. 2002 Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol. Pharm. Bull. 25(12):1588–1592PubMedCrossRefGoogle Scholar
  25. 25.
    Karim O. M., Cendron M., Mostwin J. L., Gearhart J. P. 1993 Developmental alterations in the fetal lamb bladder subjected to partial urethral obstruction in utero. J. Urol. 150(3):1060–1063PubMedGoogle Scholar
  26. 26.
    Kim S., Jin J., Kunapuli S. P. 2004 Akt activation in platelets depends on Gi signaling pathways. J. Biol. Chem. 279(6): 4186–4195PubMedCrossRefGoogle Scholar
  27. 27.
    Kropp B. P., Zhang Y., Tomasek J. J., Cowan R., Furness P. D. 3rd, Vaughan M. B., Parizi M., Cheng E. Y. 1999 Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J. Urol. 162(5):1779–1784PubMedCrossRefGoogle Scholar
  28. 28.
    Kuwahara H., Nakamura N., Kanazawa H. 2006 Nuclear localization of the serine/threonine kinase DRAK2 is involved in UV-induced apoptosis. Biol. Pharm. Bull. 29(2):225–233PubMedCrossRefGoogle Scholar
  29. 29.
    Landau E. H., Jayanthi V. R., Churchill B. M., Shapiro E., Gilmour R. F., Khoury A. E., Macarak E. J., McLorie G. A., Steckler R. E., Kogan B. A. 1994 Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation. J. Urol. 152(2 Pt 2):702–705PubMedGoogle Scholar
  30. 30.
    Matsui T., Li L., Wu J. C., Cook S. A., Nagoshi T., Picard M. H., Liao R., Rosenzweig A. 2002 Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277(25):22896–22901PubMedCrossRefGoogle Scholar
  31. 31.
    Maul T. M., Hamilton D. W., Nieponice A., Soletti L., Vorp D. A. 2007 A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture. J. Biomech. Eng. 129(1):110–116PubMedCrossRefGoogle Scholar
  32. 32.
    McGuire E. J., Woodside J. R., Borden T. A., Weiss R. M. 1981 Prognostic value of urodynamic testing in myelodysplastic patients. J. Urol. 126(2):205–209PubMedGoogle Scholar
  33. 33.
    Naga Prasad S. V., Esposito G., Mao L., Koch W. J., Rockman H. A. 2000 Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275(7): 4693–4698PubMedCrossRefGoogle Scholar
  34. 34.
    Nagatomi J., Arulanandam B. P., Metzger D. W., Meunier A., Bizios R. 2001 Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng. 7(6):717–728PubMedCrossRefGoogle Scholar
  35. 35.
    Nguyen H. T., Adam R. M., Bride S. H., Park J. M., Peters C. A., Freeman M. R. 2000 Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am. J. Physiol. Cell Physiol. 279(4):C1155–C1167PubMedGoogle Scholar
  36. 36.
    Orsola A., Adam R. M., Peters C. A., Freeman M. R. 2002 The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5): 779–783PubMedCrossRefGoogle Scholar
  37. 37.
    Park J. M., Adam R. M., Peters C. A., Guthrie P. D., Sun Z., Klagsbrun M., Freeman M. R. 1999 AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am. J. Physiol. 277(2 Pt 1):C294–C301PubMedGoogle Scholar
  38. 38.
    Park J. M., Borer J. G., Freeman M. R., Peters C. A. 1998 Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am. J. Physiol. 275(5 Pt 1):C1247–C1254PubMedGoogle Scholar
  39. 39.
    Park J. M., Yang T., Arend L. J., Schnermann J. B., Peters C. A., Freeman M. R., Briggs J. P. 1999 Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am. J. Physiol. 276(1 Pt 2):F129–F136PubMedGoogle Scholar
  40. 40.
    Parker S. H., Parker T. A., George K. S., Wu S. 2006 The roles of translation initiation regulation in ultraviolet light-induced apoptosis. Mol. Cell Biochem. 293(1–2):173–181PubMedCrossRefGoogle Scholar
  41. 41.
    Peters C. A., Vasavada S., Dator D., Carr M., Shapiro E., Lepor H., McConnell J., Retik A. B., Mandell J. 1992 The effect of obstruction on the developing bladder. J. Urol. 148(2 Pt 2):491–496PubMedGoogle Scholar
  42. 42.
    Reynolds C. M., Eguchi S., Frank G. D., Motley E. D. 2002 Signaling mechanisms of heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells. Hypertension 39(2 Pt 2):525–529PubMedCrossRefGoogle Scholar
  43. 43.
    Seki S., Sasaki K., Fraser M. O., Igawa Y., Nishizawa O., Chancellor M. B., de Groat W. C., Yoshimura N. 2002 Immunoneutralization of nerve growth factor in lumbosacral spinal cord reduces bladder hyperreflexia in spinal cord injured rats. J. Urol. 168(5):2269–2274PubMedCrossRefGoogle Scholar
  44. 44.
    Stabile E., Zhou Y. F., Saji M., Castagna M., Shou M., Kinnaird T. D., Baffour R., Ringel M. D., Epstein S. E., Fuchs S. 2003 Akt controls vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S exit. Circ. Res. 93(11):1059–1065PubMedCrossRefGoogle Scholar
  45. 45.
    Stoyanov B., Volinia S., Hanck T., Rubio I., Loubtchenkov M., Malek D., Stoyanova S., Vanhaesebroeck B., Dhand R., Nurnberg B., et al. 1995 Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269(5224):690–693PubMedCrossRefGoogle Scholar
  46. 46.
    Vadiakas G. P., Banes A. J. 1992 Verapamil decreases cyclic load-induced calcium incorporation in ROS 17/2.8 osteosarcoma cell cultures. Matrix 12(6):439–447PubMedGoogle Scholar
  47. 47.
    Watanabe T., Rivas D. A., Chancellor M. B. 1996 Urodynamics of spinal cord injury. Urol. Clin. North Am. 23(3):459–473PubMedCrossRefGoogle Scholar
  48. 48.
    Watase M., Awolesi M. A., Ricotta J., Sumpio B. E. 1997 Effect of pressure on cultured smooth muscle cells. Life Sci. 61(10):987–996PubMedCrossRefGoogle Scholar
  49. 49.
    Xing Y., Warnock J. N., He Z., Hilbert S. L., Yoganathan A. P. 2004 Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann. Biomed. Eng. 32(11):1461–1470PubMedCrossRefGoogle Scholar
  50. 50.
    Yalla S. V., Rossier A. B., Fam B. 1976 Dyssynergic vesicourethral responses during bladder rehabilitation in spinal cord injury patients: effects of suprapubic percussion, crede method and bethanechol chloride. J. Urol. 115(5):575–579PubMedGoogle Scholar
  51. 51.
    Yano S., Tokumitsu H., Soderling T. R. 1998 Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396(6711):584–587PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Department of BioengineeringClemson UniversityClemsonUSA

Personalised recommendations