Annals of Biomedical Engineering

, Volume 35, Issue 9, pp 1595–1607 | Cite as

A Quantitative Model of Gastric Smooth Muscle Cellular Activation



A physiologically realistic quantitative description of the electrical behavior of a gastric smooth muscle (SM) cell is presented. The model describes the response of a SM cell when activated by an electrical stimulus coming from the network of interstitial cells of Cajal (ICC) and is mediated by the activation of different ion channels species in the plasma membrane. The conductances (predominantly Ca2+ and K+) that are believed to substantially contribute to the membrane potential fluctuations during slow wave activity have been included in the model. A phenomenological description of intracellular Ca2+ dynamics has also been included because of its primary importance in regulating a number of cellular processes. In terms of shape, duration, and amplitude, the resulting simulated smooth muscle depolarizations (SMDs) are in good agreement with experimentally recordings from mammalian gastric SM in control and altered conditions. This model has also been designed to be suitable for incorporation into large scale multicellular simulations.


Gastric muscle Electrophysiology Computational model 



The authors are grateful to Dr. K. Sanders and Dr. G. Farrugia for their advice.


  1. 1.
    Akbarali H. I., Giles W. R. (1993) Ca2+ and Ca(2+)-activated Cl currents in rabbit oesophageal smooth muscle. J. Physiol. 460:117–133PubMedGoogle Scholar
  2. 2.
    Aliev R. R., Richards W., Wikswo J. P. (2000) A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204:21–28PubMedCrossRefGoogle Scholar
  3. 3.
    Amberg G. C., Baker S. A., Koh S. D., Hatton W. J., Murray K. J., Horowitz B., Sanders K. M. (2002) Characterization of the A-type potassium current in murine gastric antrum. J. Physiol. 544:417–428PubMedCrossRefGoogle Scholar
  4. 4.
    Amberg G. C., Koh S. D., Imaizumi Y., Ohya S., Sanders K. M. (2003). A-type potassium currents in smooth muscle. Am. J. Physiol. Cell. Physiol. 284:C583–C595PubMedGoogle Scholar
  5. 5.
    Barrett J. N., Magleby K. L., Pallotta B. S. (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. 331:211–230PubMedGoogle Scholar
  6. 6.
    Boev K., Bonev A., Papasova M. (1985) 4-Aminopyridine-induced changes in the electrical and contractile activities of the gastric smooth muscle. Gen. Physiol. Biophys. 4:589–595PubMedGoogle Scholar
  7. 7.
    Bradley K. N., Flynn E. R., Muir T. C., McCarron J. G. (2002) Ca(2+) regulation in guinea-pig colonic smooth muscle: the role of the Na(+)–Ca(2+) exchanger and the sarcoplasmic reticulum. J. Physiol. 538:465–482PubMedCrossRefGoogle Scholar
  8. 8.
    Carl A., Frey B. W., Ward S. M., Sanders K. M., Kenyon J. L. (1993) Inhibition of slow-wave repolarization and Ca(2+)-activated K+ channels by quaternary ammonium ions. Am. J. Physiol. 264:C625–C631PubMedGoogle Scholar
  9. 9.
    Carl A., Lee H. K., Sanders K. M. (1996) Regulation of ion channels in smooth muscles by calcium. Am J Physiol. 271:C9–C34PubMedGoogle Scholar
  10. 10.
    Casteels R. (1981) Membrane potential in smooth muscle. In: Bulbring E. B. A., Jones A. W., Tomita T. (eds) Smooth Muscle: An Assesment of Current Knowledge. Edward Arnold, London, pp 105–126Google Scholar
  11. 11.
    Cousins H. M., Edwards F. R., Hickey H., Hill C. E., Hirst G. D. (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J. Physiol. 550:829–844PubMedCrossRefGoogle Scholar
  12. 12.
    Edwards F. R., Hirst G. D. (2005) An electrical description of the generation of slow waves in the antrum of the guinea-pig. J. Physiol. 564:213–232PubMedCrossRefGoogle Scholar
  13. 13.
    Farrugia G. (1999) Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61:45–84PubMedCrossRefGoogle Scholar
  14. 14.
    Farrugia G., Rich A., Rae J. L., Sarr M. G., Szurszewski J. H. (1995) Calcium currents in human and canine jejunal circular smooth muscle cells. Gastroenterology 109:707–717PubMedCrossRefGoogle Scholar
  15. 15.
    Forrest, A. S., T. Ordog, and K. M. Sanders. Neural regulation of slow wave frequency in the murine gastric antrum. Am. J. Physiol. Gastrointest. Liver Physiol. 290(3):G486–G495, 2005.Google Scholar
  16. 16.
    Ganitkevich V., Shuba M. F., Smirnov S. V. (1987) Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell. J. Physiol. 392:431–449PubMedGoogle Scholar
  17. 17.
    Hagiwara S., Kusano K., Saito N. (1961) Membrane changes of Onchidium nerve cell in potassium-rich media. J. Physiol. 155:470–489PubMedGoogle Scholar
  18. 18.
    Hirst G. D., Edwards F. R. (2004) Role of interstitial cells of Cajal in the control of gastric motility. J. Pharmacol. Sci. 96:1–10PubMedCrossRefGoogle Scholar
  19. 19.
    Holm A. N., Rich A., Miller S. M., Strege P., Ou Y., Gibbons S., Sarr M. G., Szurszewski J. H., Rae J. L., Farrugia G. (2002) Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122:178–187PubMedCrossRefGoogle Scholar
  20. 20.
    Huang S., Nakayama S., Iino S., Tomita T. (1999) Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am. J. Physiol. 276:G518–G528PubMedGoogle Scholar
  21. 21.
    Huizinga J. D. (2001) Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1129–G1134PubMedGoogle Scholar
  22. 22.
    Hurwitz L., Fitzpatrick D. F., Debbas G., Landon E. J. (1973) Localization of calcium pump activity in smooth muscle. Science 179:384–386PubMedCrossRefGoogle Scholar
  23. 23.
    Inoue R., Isenberg G. (1990) Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424:57–71PubMedGoogle Scholar
  24. 24.
    Inoue R., Isenberg G. (1990) Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424:73–92PubMedGoogle Scholar
  25. 25.
    Isaac L., McArdle S., Miller N. M., Foster R. W., Small R. C. (1996) Effects of some K(+)-channel inhibitors on the electrical behaviour of guinea-pig isolated trachealis and on its responses to spasmogenic drugs. Br. J. Pharmacol. 117:1653–1662PubMedGoogle Scholar
  26. 26.
    Kang T. M., Kim Y. C., Sim J. H., Rhee J. C., Kim S. J., Uhm D. Y., So I., Kim K. W. (2001) The properties of carbachol-activated nonselective cation channels at the single channel level in guinea pig gastric myocytes. Jpn. J. Pharmacol. 85:291–298PubMedCrossRefGoogle Scholar
  27. 27.
    Kim S. J., Ahn S. C., Kim J. K., Kim Y. C., So I., Kim K. W. (1997) Changes in intracellular Ca2+ concentration induced by L-type Ca2+ channel current in guinea pig gastric myocytes. Am. J. Physiol. 273:C1947–C1956PubMedGoogle Scholar
  28. 28.
    Knot H., Brayden J., Nelson M. (1995) Calcium channels and potassium channels. In: Barany M., (eds). Biochemistry of Smooth Muscle Contraction. Academic Press, Chicago, pp. 203–217Google Scholar
  29. 29.
    Koh S. D., Monaghan K., Ro S., Mason H. S., Kenyon J. L., Sanders K. M. (2001) Novel voltage-dependent non-selective cation conductance in murine colonic myocytes. J. Physiol. 533:341–355PubMedCrossRefGoogle Scholar
  30. 30.
    Koh S. D., Ward S. M., Dick G. M., Epperson A., Bonner H. P., Sanders K. M., Horowitz B., Kenyon J. L. (1999) Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle. J. Physiol. 515(Pt 2):475–487PubMedCrossRefGoogle Scholar
  31. 31.
    Lang, R. J. and C. A. Rattray-Wood. A simple mathematical model of the spontaneous electrical activity in a single smooth muscle myocyte. In: Smooth Muscle Excitation, edited by B. Bolton and T. Tomita. London: Academic Press, 1996, pp. 391–402.Google Scholar
  32. 32.
    Langton P. D., Burke E. P., Sanders K. M. (1989) Participation of Ca currents in colonic electrical activity. Am. J. Physiol. 257:C451–C460PubMedGoogle Scholar
  33. 33.
    Miftakhov R. N., Abdusheva G. R., Christensen J. (1999) Numerical simulation of motility patterns of the small bowel. 1. formulation of a mathematical model. J. Theor. Biol. 197:89–112PubMedCrossRefGoogle Scholar
  34. 34.
    Monteith G. R., Kable E. P., Chen S., Roufogalis B. D. (1996) Plasma membrane calcium pump-mediated calcium efflux and bulk cytosolic free calcium in cultured aortic smooth muscle cells from spontaneously hypertensive and Wistar-Kyoto normotensives rats. J. Hypertens 14:435–442PubMedCrossRefGoogle Scholar
  35. 35.
    Moore E. D., Etter E. F., Philipson K. D., Carrington W. A., Fogarty K. E., Lifshitz L. M., Fay F. S. (1993) Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365:657–660PubMedCrossRefGoogle Scholar
  36. 36.
    Muraki K., Imaizumi Y., Watanabe M. (1991) Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J. Physiol. 442:351–375PubMedGoogle Scholar
  37. 37.
    Noack T., Deitmer P., Lammel E. (1992) Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum. J. Physiol. 451:387–417PubMedGoogle Scholar
  38. 38.
    Noble D. (2004) Modeling the heart. Physiology (Bethesda) 19:191–197Google Scholar
  39. 39.
    Ohta T., Ito S., Nakazato Y. (1993) Chloride currents activated by caffeine in rat intestinal smooth muscle cells. J. Physiol. 465:149–162PubMedGoogle Scholar
  40. 40.
    Pullan A., Cheng L., Yassi R., Buist M. (2004) Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85:523–550PubMedCrossRefGoogle Scholar
  41. 41.
    Sanders K. M. (2001) Invited review: mechanisms of calcium handling in smooth muscles. J. Appl. Physiol. 91:1438–1449PubMedGoogle Scholar
  42. 42.
    Sanders, K., S. Koh, and S. Ward. Organization and electrophysiology of interstitial cells of cajal and smooth muscle cells in the gastrointestinal tract. In: Physiology of the gastrointestinal tract, edited by L.R. Johnson. Boston: Elsevier Academic Press, 2006, pp. 533–576.Google Scholar
  43. 43.
    Sanders K. M., Koh S. D., Ward S. M. (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68:307–343PubMedCrossRefGoogle Scholar
  44. 44.
    Sims S. M. (1992) Calcium and potassium currents in canine gastric smooth muscle cells. Am. J. Physiol. 262:G859–G867PubMedGoogle Scholar
  45. 45.
    Sims S. M. (1992) Cholinergic activation of a non-selective cation current in canine gastric smooth muscle is associated with contraction. J. Physiol. 449:377–398PubMedGoogle Scholar
  46. 46.
    Skinner F. K., Ward C. A., Bardakjian B. L. (1993) Pump and exchanger mechanisms in a model of smooth muscle. Biophys. Chem. 45:253–272PubMedCrossRefGoogle Scholar
  47. 47.
    Smirnov S. V., Zholos A. V., Shuba M. F. (1992) A potential-dependent fast outward current in single smooth muscle cells isolated from the newborn rat ileum. J. Physiol. 454:573–589PubMedGoogle Scholar
  48. 48.
    Splawski I., Timothy K. W., Sharpe L. M., Decher N., Kumar P., Bloise R., Napolitano C., Schwartz P. J., Joseph R. M., Condouris K., Tager-Flusberg H., Priori S. G., Sanguinetti M. C., Keating M. T. (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31PubMedCrossRefGoogle Scholar
  49. 49.
    Suzuki H. (2000) Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn. J. Physiol. 50:289–301PubMedCrossRefGoogle Scholar
  50. 50.
    ten Tusscher K. H., Noble D., Noble P. J., Panfilov A. V. (2004) A model for human ventricular tissue. Am. J. Physiol. Heart. Circ. Physiol. 286:H1573–H1589PubMedCrossRefGoogle Scholar
  51. 51.
    Thornbury K. D., Ward S. M., Sanders K. M. (1992) Participation of fast-activating, voltage-dependent K currents in electrical slow waves of colonic circular muscle. Am. J. Physiol. 263:C226–236PubMedGoogle Scholar
  52. 52.
    Tiwari J. K., Sikdar S. K. (1999) Temperature-dependent conformational changes in a voltage-gated potassium channel. Eur. Biophys. J. 28:338–345PubMedCrossRefGoogle Scholar
  53. 53.
    Vivaudou M. B., Clapp L. H., Walsh J. V., Jr., Singer J. J. (1988) Regulation of one type of Ca2+ current in smooth muscle cells by diacylglycerol and acetylcholine. Faseb. J. 2:2497–2504PubMedGoogle Scholar
  54. 54.
    Vogalis F., Sanders K. M. (1990) Cholinergic stimulation activates a non-selective cation current in canine pyloric circular muscle cells. J. Physiol. 429:223–236PubMedGoogle Scholar
  55. 55.
    Vogalis F., Publicover N. G., Hume J. R., Sanders K. M. (1991) Relationship between calcium current and cytosolic calcium in canine gastric smooth muscle cells. Am. J. Physiol. 260:C1012–C1018PubMedGoogle Scholar
  56. 56.
    Vogalis F., Publicover N. G., Sanders K. M. (1992) Regulation of calcium current by voltage and cytoplasmic calcium in canine gastric smooth muscle. Am. J. Physiol. 262:C691–C700PubMedGoogle Scholar
  57. 57.
    Wang Q., Akbarali H. I., Hatakeyama N., Goyal R. K. (1996) Caffeine- and carbachol-induced Cl- and cation currents in single opossum esophageal circular muscle cells. Am. J. Physiol. 271:C1725–C1734PubMedGoogle Scholar
  58. 58.
    Ward S. M., Dixon R. E., de Faoite A., Sanders K. M. (2004) Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J. Physiol. 561:793–810PubMedCrossRefGoogle Scholar
  59. 59.
    White C., McGeown J. G. (2000) Regulation of basal intracellular calcium concentration by the sarcoplasmic reticulum in myocytes from the rat gastric antrum. J. Physiol. 529(Pt 2):395–404PubMedCrossRefGoogle Scholar
  60. 60.
    Wu C., Fry C. H. (2001) Na(+)/Ca(2+) exchange and its role in intracellular Ca(2+) regulation in guinea pig detrusor smooth muscle. Am. J. Physiol. Cell. Physiol. 280:C1090–C1096PubMedGoogle Scholar
  61. 61.
    Xiong Z., Sperelakis N., Noffsinger A., Fenoglio-Preiser C. (1995) Ca2+ currents in human colonic smooth muscle cells. Am. J. Physiol. 269:G378–G385PubMedGoogle Scholar
  62. 62.
    Xu W. X., Kim S. J., So I., Kang T. M., Rhee J. C., Kim K. W. (1997) Volume-sensitive chloride current activated by hyposmotic swelling in antral gastric myocytes of the guinea-pig. Pflugers Arch. 435:9–19PubMedCrossRefGoogle Scholar
  63. 63.
    Yamamoto Y., Hu S. L., Kao C. Y. (1989) Inward current in single smooth muscle cells of the guinea pig taenia coli. J. Gen. Physiol. 93:521–550PubMedCrossRefGoogle Scholar
  64. 64.
    Yoshino M., Someya T., Nishio A., Yabu H. (1988) Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: evidence for the existence of two types of Ca channels. Pflugers Arch. 411:229–231PubMedCrossRefGoogle Scholar
  65. 65.
    Yunker A. M., McEnery M. W. (2003) Low-voltage-activated ("T-Type") calcium channels in review. J. Bioenerg. Biomembr. 35:533–575PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Division of BioengineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations