Advertisement

Annals of Biomedical Engineering

, Volume 35, Issue 7, pp 1175–1187 | Cite as

Noninvasive Determination of Ligament Strain with Deformable Image Registration

  • Nikhil S. Phatak
  • Qunli Sun
  • Seong-Eun Kim
  • Dennis L. Parker
  • R. Kent Sanders
  • Alexander I. Veress
  • Benjamin J. Ellis
  • Jeffrey A. WeissEmail author
Article

Abstract

Ligament function and propensity for injury are directly related to regional stresses and strains. However, noninvasive techniques for measurement of strain are currently limited. This study validated the use of Hyperelastic Warping, a deformable image registration technique, for noninvasive strain measurement in the human medial collateral ligament using direct comparisons with optical measurements. Hyperelastic Warping determines the deformation map that aligns consecutive images of a deforming material, allowing calculation of strain. Diffeomorphic deformations are ensured by representing the deformable image as a hyperelastic material. Ten cadaveric knees were subjected to six loading scenarios each. Tissue deformation was documented with magnetic resonance imaging (MRI) and video-based experimental measurements. MRI datasets were analyzed using Hyperelastic Warping, representing the medial collateral ligament (MCL) with a hexahedral finite element (FE) model projected to a manually segmented ligament surface. The material behavior was transversely isotropic hyperelastic. Warping predictions of fiber stretch were strongly correlated with experimentally measured strains (R 2 = 0.81). Both sets of measurements were in agreement with previous ex vivo studies. Warping predictions of fiber stretch were insensitive to bulk:shear modulus ratio, fiber stiffness, and shear modulus in the range of +2.5SD to −1.0SD. Correlations degraded when the shear modulus was decreased to 2.5SD below the mean (R 2 = 0.56), and when an isotropic constitutive model was substituted for the transversely isotropic model (R 2 = 0.65). MCL strains in the transitional region near the joint line, where the material behavior and material symmetry are more complex, showed the most sensitivity to changes in shear modulus. These results demonstrate that Hyperelastic Warping requires the use of a constitutive model that reflects the material symmetry, but not subject-specific material properties for accurate strain predictions for this application. Hyperelastic Warping represents a powerful technique for noninvasive strain measurement of musculoskeletal tissues and has many advantages over other image-based strain measurement techniques.

Keywords

Strain measurement Ligament Deformable image registration Hyperelastic Warping 

Notes

Acknowledgments

Financial support from NSF #BES-0134503 is gratefully acknowledged. The authors thank Garry Gold of Stanford University for suggesting the use of a nonuniform acquisition matrix, and Marianne Bergquist, Jeff McCann and Anita Apte for assistance with experiments and image acquisition.

References

  1. 1.
    Arms S., Boyle J., Johnson R., Pope M. (1983) Strain measurement in the medial collateral ligament of the human knee: An autopsy study. J. Biomech. 16(7):491–6PubMedCrossRefGoogle Scholar
  2. 2.
    Bajcsy R., Lieberson R., Reivich M. (1983) A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J. Comput. Assist. Tomogr. 7(4):618–625PubMedCrossRefGoogle Scholar
  3. 3.
    Bajcsy R., Kovacic S. (1989) Multiresolution elastic matching. Comput. Vis. Graphics Image Process. 46:1–21CrossRefGoogle Scholar
  4. 4.
    Bay B. K. (1995) Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone. J. Orthop. Res. 13(2):258–67PubMedCrossRefGoogle Scholar
  5. 5.
    Bay B. K, Yerby S. A., McLain R. F., Toh E. (1999) Measurement of strain distributions within vertebral body sections by texture correlation. Spine 24(1):10–7PubMedCrossRefGoogle Scholar
  6. 6.
    Bey M. J., Song H. K., Wehrli F. W., Soslowsky L. J. (2002) Intratendinous strain fields of the intact supraspinatus tendon: The effect of glenohumeral joint position and tendon region. J Orthop Res 20(4):869–74PubMedCrossRefGoogle Scholar
  7. 7.
    Bey M. J., Song H. K., Wehrli F. W., Soslowsky L. J. (2002) A noncontact, nondestructive method for quantifying intratissue deformations and strains. J Biomech Eng 124(2):253–8PubMedCrossRefGoogle Scholar
  8. 8.
    Beynnon B. D., Fleming B. C., Johnson R. J., Nichols C. E., Renstrom P. A., Pope M. H. (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am. J. Sports Med. 23(1):24–34PubMedGoogle Scholar
  9. 9.
    Bruder H., Fischer H., Graumann R., Deimling M. (1988) A new steady-state imaging sequence for simultaneous acquisition of two mr images with clearly different contrasts. Magn Reson Med 7(1):35–42PubMedCrossRefGoogle Scholar
  10. 10.
    Christensen G. E., Rabbitt R. D., Miller M. I. (1994) 3d brain mapping using a deformable neuroanatomy. Phys Med Biol 39(3):609–18PubMedCrossRefGoogle Scholar
  11. 11.
    Christensen G. E., Rabbitt R. D., Miller M. I. (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447CrossRefPubMedGoogle Scholar
  12. 12.
    Christensen G. E., Johnson H. J. (2001) Consistent image registration. IEEE Trans Med Imaging 20(7):568–82PubMedCrossRefGoogle Scholar
  13. 13.
    Ellis B. J., Lujan T. J., Dalton M. S., Weiss J. A. (2006) Medial collateral ligament insertion site and contact forces in the acl-deficient knee. J Orthop Res 24(4):800–10PubMedCrossRefGoogle Scholar
  14. 14.
    Federico S., Grillo A., La Rosa G., Giaquinta G., Herzog W. (2005) A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J Biomech 38(10):2008–18PubMedCrossRefGoogle Scholar
  15. 15.
    Gardiner J. C., Weiss J. A., Rosenberg T. D. (2001) Strain in the human medial collateral ligament during valgus loading of the knee. Clin Orthop (391):266–74PubMedCrossRefGoogle Scholar
  16. 16.
    Gardiner J. C., Weiss J. A. (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21(6):1098–106PubMedCrossRefGoogle Scholar
  17. 17.
    Gatehouse P. D., Bydder G. M. (2003) Magnetic resonance imaging of short t2 components in tissue. Clin Radiol 58(1):1–19PubMedCrossRefGoogle Scholar
  18. 18.
    Gilchrist C. L., Xia J. Q., Setton L. A., Hsu E. W. (2004) High-resolution determination of soft tissue deformations using MRI and first-order texture correlation. IEEE Trans Med Imaging 23(5):546–53PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez R. C., Woods R. E. (1992) Digital Image Processing. Reading, MA, Addison-Wesley Pub. Co.Google Scholar
  20. 20.
    Hadamard, J. Sur les problemes aux derivees partielles et leur signification physique. Bull. Univ. Princeton. 13, 1902.Google Scholar
  21. 21.
    Halloran J. P., Petrella A. J., Rullkoetter P. J. (2005) Explicit finite element modeling of total knee replacement mechanics. J Biomech 38(2):323–31PubMedCrossRefGoogle Scholar
  22. 22.
    Henkelman R. M., Stanisz G. J., Kim J. K., Bronskill M. J. (1994) Anisotropy of nmr properties of tissues. Magn Reson Med 32(5):592–601PubMedCrossRefGoogle Scholar
  23. 23.
    Hull M. L., Berns G. S., Varma H., Patterson H. A. (1996) Strain in the medial collateral ligament of the human knee under single and combined loads. J. Biomech. 29(2):199–206PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson H. J., Christensen G. E. (2002) Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5):450–461PubMedCrossRefGoogle Scholar
  25. 25.
    Kawada T., Abe T., Yamamoto K., Hirokawa S., Soejima T., Tanaka N., Inoue A. (1999) Analysis of strain distribution in the medial collateral ligament using a photoelastic coating method. Med. Eng. Phys. 21(5):279–91PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, S. E., N. Phatak, H. Buswell, E. K. Jeong, J. A. Weiss, and D. L. Parker. Short te double echo 3d spgr acquistion for short t2 imaging. Proceedings of the 11th Scientific Meeting of International Society for Magnetic Resonance in Medicine, Toronto, Canada, 2003.Google Scholar
  27. 27.
    Lujan T. J., Lake S. P., Plaizier T. A., Ellis B. J., Weiss J. A. (2005) Simultaneous measurement of three-dimensional joint kinematics and ligament strains with optical methods. J. Biomech. Eng. 127(1):193–197PubMedCrossRefGoogle Scholar
  28. 28.
    Maintz J. B., Viergever M. A. (1998) A survey of medical image registration. Med Image Anal 2(1):1–36PubMedCrossRefGoogle Scholar
  29. 29.
    Maker, B. N., R. M. Ferencz, J. O. Hallquist. Nike3d: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. Lawrence Livermore National Laboratory Technical Report, 1990, UCRL-MA #105268.Google Scholar
  30. 30.
    Marsden J. E., Hughes T. J. R. (1994) Mathematical Foundations of Elasticity. Minneola, NY, DoverGoogle Scholar
  31. 31.
    Matthies H., Strang G. (1979) The solution of nonlinear finite element equations. Int. J. Numer. Methods Eng. 14:1613–1626CrossRefGoogle Scholar
  32. 32.
    Miller M. I., Trouvé A., Younes L. (2002) On the metrics and euler-lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4:375–405PubMedCrossRefGoogle Scholar
  33. 33.
    Neu C. P., Hull M. L., Walton J. H., Buonocore M. H. (2005) MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants. Magn Reson Med 53(2):321–8PubMedCrossRefGoogle Scholar
  34. 34.
    Nicolella D. P., Bonewald L. F., Moravits D. E., Lankford J. (2005) Measurement of microstructural strain in cortical bone. Eur J Morphol 42(1–2):23–9PubMedCrossRefGoogle Scholar
  35. 35.
    O’Dell W. G., McCulloch A. D. (2000) Imaging three-dimensional cardiac function. Annu. Rev. Biomed. Eng. 2:431–56PubMedCrossRefGoogle Scholar
  36. 36.
    Provenzano P. P., Heisey D., Hayashi K., Lakes R., Vanderby R. Jr. (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92(1):362–71PubMedGoogle Scholar
  37. 37.
    Quapp K. M., Weiss J. A. (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–63PubMedGoogle Scholar
  38. 38.
    Rabbitt R. D., Weiss J. A., Christensen G. E., Miller M. I. (1995) Mapping of hyperelastic deformable templates using the finite element method. SPIE 2573:252–265CrossRefGoogle Scholar
  39. 39.
    Sled J. G., Zijdenbos A. P., Evans A. C. (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  40. 40.
    Spencer A. (1980) Continuum Mechanics. New York, LongmanGoogle Scholar
  41. 41.
    Timins M. E., Erickson S. J., Estkowski L. D., Carrera G. F., Komorowski R. A. (1995) Increased signal in the normal supraspinatus tendon on mr imaging: Diagnostic pitfall caused by the magic-angle effect. AJR Am. J. Roentgenol. 165(1):109–114PubMedGoogle Scholar
  42. 42.
    Veress A. I., Weiss J. A., Gullberg G. T., Vince D. G., Rabbitt R. D. (2002) Strain measurement in coronary arteries using intravascular ultrasound and deformable images. J Biomech Eng 124(6):734–41PubMedCrossRefGoogle Scholar
  43. 43.
    Veress A. I., Gullberg G. T., Weiss J. A. (2005) Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. J Biomech Eng 127(7):1195–207PubMedCrossRefGoogle Scholar
  44. 44.
    Veress, A. I., N. Phatak, J. A. Weiss. Deformable image registration with hyperelastic warping. In: Handbook of Biomedical Image Analysis, Vol 3, Registration Models (Part a), edited by J. Suri, D. Wilson, and S. Laxminarayan. New York: Marcel Dekker Inc., 2005, pp. 1–2.Google Scholar
  45. 45.
    Villemure I., Cloutier L., Matyas J. R., Duncan N. A. (2007) Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression. J Biomech 40(1):149–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Weiss J., Maker B., Govindjee S. (1996) Finite element implementation of incompressible transversely isotropic hyperelasticity. Comput. Methods Applic. Mech. Eng. 135:107–128CrossRefGoogle Scholar
  47. 47.
    Weiss J. A., Rabbitt R. D., Bowden A. E. (1998) Incorporation of medical image data in finite element models to track strain in soft tissues. SPIE 3254:477–484CrossRefGoogle Scholar
  48. 48.
    Weiss J. A., Gardiner J. C., Ellis B. J., Lujan T. J., Phatak N. S. (2005) Three-dimensional finite element modeling of ligaments: Technical aspects. Med Eng Phys 27(10):845–61PubMedCrossRefGoogle Scholar
  49. 49.
    Woo S. L., Abramowitch S. D., Kilger R., Liang R. (2006) Biomechanics of knee ligaments: Injury, healing, and repair. J Biomech 39(1):1–20PubMedCrossRefGoogle Scholar
  50. 50.
    Zerhouni E. A., Parish D. M., Rogers W. J., Yang A., Shapiro E. P. (1988) Human heart: Tagging with mr imaging–a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Nikhil S. Phatak
    • 1
  • Qunli Sun
    • 1
  • Seong-Eun Kim
    • 2
  • Dennis L. Parker
    • 2
  • R. Kent Sanders
    • 2
  • Alexander I. Veress
    • 1
  • Benjamin J. Ellis
    • 1
  • Jeffrey A. Weiss
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of RadiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations