Annals of Biomedical Engineering

, Volume 35, Issue 7, pp 1264–1275 | Cite as

Electric Fields around and within Single Cells during Electroporation—A Model Study

  • Brian J. Mossop
  • Roger C. Barr
  • Joshua W. Henshaw
  • Fan Yuan


One of the key issues in electric field-mediated molecular delivery into cells is how the intracellular field is altered by electroporation. Therefore, we simulated the electric field in both the extracellular and intracellular domains of spherical cells during electroporation. The electroporated membrane was modeled macroscopically by assuming that its electric resistivity was smaller than that of the intact membrane. The size of the electroporated region on the membrane varied from zero to the entire surface of the cell. We observed that for a range of values of model constants, the intracellular current could vary several orders of magnitude whereas the maximum variations in the extracellular and total currents were less than 8% and 4%, respectively. A similar difference in the variations was observed when comparing the electric fields near the center of the cell and across the permeabilized membrane, respectively. Electroporation also caused redirection of the extracellular field that was significant only within a small volume in the vicinity of the permeabilized regions, suggesting that the electric field can only facilitate passive cellular uptake of charged molecules near the pores. Within the cell, the field was directed radially from the permeabilized regions, which may be important for improving intracellular distribution of charged molecules.


Intracellular electric field Single cells Electroporation Molecular delivery 


  1. 1.
    Alberts B., A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell. 4th ed. New York, Garland Science, (2002)Google Scholar
  2. 2.
    Andre F., L. M. Mir. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene. Ther. 11(Suppl 1):S33–S42, (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    Bae, C. and P. J. Butler. Automated single-cell electroporation. Biotechniques 41:399–400, 402, 2006Google Scholar
  4. 4.
    Bigey P., M. F. Bureau, D. Scherman. In vivo plasmid DNA electrotransfer. Curr. Opin. Biotechnol. 13:443–447, (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Cartee L. A., R. Plonsey. The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. IEEE Trans. Biomed. Eng. 39:76–85, (1992)PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng D. K., L. Tung, E. A. Sobie. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. 277:H351–H362, (1999)PubMedGoogle Scholar
  7. 7.
    DeBruin K. A., W. Krassowska. Modeling electroporation in a single cell. I. Effects Of field strength and rest potential. Biophys. J. 77:1213–1224, (1999)PubMedGoogle Scholar
  8. 8.
    DeBruin K. A., W. Krassowska. Modeling electroporation in a single cell. II. Effects Of ionic concentrations. Biophys. J. 77:1225–1233, (1999)PubMedGoogle Scholar
  9. 9.
    Gowrishankar T. R., W. Chen, R. C. Lee. Non-linear microscale alterations in membrane transport by electropermeabilization. Ann. N. Y. Acad. Sci. 858:205–216, (1998)PubMedCrossRefGoogle Scholar
  10. 10.
    Gowrishankar T. R., A. T. Esser, Z. Vasilkoski, K. C. Smith, J. C. Weaver. Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem. Biophys. Res. Comm. 341:1266–1276, (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    Gowrishankar T. R., D. A. Stewart, J. C. Weaver. Model of a confined spherical cell in uniform and heterogeneous applied electric fields. Bioelectrochemistry 68:181–190, (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    Gowrishankar T. R., J. C. Weaver. An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. U. S. A. 100: 3203–3208, (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Henshaw J. W., D. A. Zaharoff, B. J. Mossop, F. Yuan. A single molecule detection method for understanding mechanisms of electric field-mediated interstitial transport of genes. Bioelectrochemistry 69:248–253, (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    Hibino M., H. Itoh, K. Kinosita Jr. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, (1993)PubMedGoogle Scholar
  15. 15.
    Hibino M., M. Shigemori, H. Itoh, K. Nagayama, K. Kinosita Jr. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209–220, (1991)PubMedGoogle Scholar
  16. 16.
    Hickey J. D., R. Gilbert. Modeling the electromobility of ions in a target tissue. DNA Cell. Biol. 22:823–828, (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Houk B. E., G. Hochhaus, and J. A. Hughes. Kinetic modeling of plasmid DNA degradation in rat plasma. AAPS PharmSci. 1:E9, 1999PubMedCrossRefGoogle Scholar
  18. 18.
    Khine M., A. Lau, C. Ionescu-Zanetti, J. Seo, L. P. Lee. A single cell electroporation chip. Lab. Chip. 5:38–43, (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Kotnik T., D. Miklavcic. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679, (2000)PubMedGoogle Scholar
  20. 20.
    Lechardeur D., K. J. Sohn, M. Haardt, P. B. Joshi, M. Monck, R. W. Graham, B. Beatty, J. Squire, H. O’Brodovich, G. L. Lukacs. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene. Ther. 6:482–497, (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    Lukacs G. L., P. Haggie, O. Seksek, D. Lechardeur, N. Freedman, A. S. Verkman. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275:1625–1629, (2000)PubMedCrossRefGoogle Scholar
  22. 22.
    McGuire S., D. Zaharoff, F. Yuan. Interstitial transport of macromolecules: implication for nucleic acid delivery in solid tumors. R. I. Mahato, S. W. Kim (Eds) Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics. Taylor & Francis Books, London, pp. 434–454, (2002)Google Scholar
  23. 23.
    Mossop, B. J., R. C. Barr, J. W. Henshaw, D. A. Zaharoff and F. Yuan. Electric fields in tumors exposed to external voltage sources: implication for electric field-mediated drug and gene delivery. Ann. Biomed. Eng. 34:1564–1572, 2006PubMedCrossRefGoogle Scholar
  24. 24.
    Mossop B. J., R. C. Barr, D. A. Zaharoff, F. Yuan. Electric fields within cells as a function of membrane resistivity – a model study. IEEE Trans. Nanobioscience 3:225–231, (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    Neu J. C., K. C. Smith, W. Krassowska. Electrical energy required to form large conducting pores. Bioelectrochemistry 60:107–114, (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    Neumann E., S. Kakorin, K. Toensing. Fundamentals of electroporative delivery of drugs and genes. Bioelectroch. Bioener. 48:3–16, (1999)CrossRefGoogle Scholar
  27. 27.
    Pavlin M., D. Miklavcic. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys. J. 85:719–729, (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    Pavlin M., N. Pavselj, D. Miklavcic. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49:605–612, (2002)PubMedCrossRefGoogle Scholar
  29. 29.
    Plonsey R., R. C. Barr. Bioelectricity, A Quantitative Approach. New York, Academic-Plenum Publishers, (2000)Google Scholar
  30. 30.
    Rae J. L., R. A. Levis. Single-cell electroporation. Pflugers. Arch. 443: 664–670, (2002)PubMedCrossRefGoogle Scholar
  31. 31.
    Ribeiro S. C., G. A. Monteiro, D. M. Prazeres. The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. J. Gene. Med. 6:565–573, (2004)PubMedCrossRefGoogle Scholar
  32. 32.
    Smith, K. C., T. R. Gowrishankar, A. T. Esser, D. A. Stewart and J. C. Weaver. The spatially distributed dynamic transmembrane voltage of cells and organelles due to 10-ns pulses: meshed transport networks. IEEE Trans. Plasma. Sci. 34:1394–1404, 2006CrossRefGoogle Scholar
  33. 33.
    Stewart D. A. J., T. R. Gowrishankar, J. C. Weaver. Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans. Plasma. Sci. 32:1696–1708, (2004)CrossRefGoogle Scholar
  34. 34.
    Zaharoff D. A., R. C. Barr, C. Y. Li, F. Yuan. Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene. Ther. 9: 1286–1290, (2002)PubMedCrossRefGoogle Scholar
  35. 35.
    Zaharoff D. A., F. Yuan. Effects of pulse strength and pulse duration on in vitro DNA electromobility. Bioelectrochemistry 62:37–45, (2004)PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Brian J. Mossop
    • 1
  • Roger C. Barr
    • 1
  • Joshua W. Henshaw
    • 1
  • Fan Yuan
    • 1
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations