Annals of Biomedical Engineering

, Volume 35, Issue 5, pp 744–754 | Cite as

Detection of Nonlinearity in Cardiovascular Variability Signals using Cyclostationary Analysis

  • Saeid SeydnejadEmail author


A novel approach for detection of polynomial nonlinearity in the neuro-cardiovascular system based on cyclostationary analysis is presented. Metronome breathing is employed to provide a sinusoidal input to the neuro-cardiovascular system in which Heart Rate Variability (HRV) and Blood Pressure Variation (BPV) are considered as its outputs. The presence of new harmonics of the main respiratory rate in the HRV and BPV is investigated by using the concept of (self) phase and (self) frequency coupling. It is shown that a second order polynomial nonlinear system is actually involved in producing the HRV and BPV. The strength of this nonlinearity decreases with increasing the breathing rate.


Heart rate variability Blood pressure variation Cardiovascular system Cyclostationary process Harmonic retrieval 


  1. 1.
    Censi F., Calcagnini G., Lino S., et al. (2000) Transient phase locking patterns among respiration, heart rate and blood pressure during cardiorespiratory synchronization in humans. Med. Bio. Eng. Comp. 38:416–426CrossRefGoogle Scholar
  2. 2.
    Chon K. H., Mullen T. J., Cohen R. J. (1996) A Dual-Input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43(5):530–543PubMedCrossRefGoogle Scholar
  3. 3.
    Christini D. J., Bennett F. M., Lutchen K. R., et al. (1995) Application of linear and nonlinear time series modeling to heart rate dynamics analysis. IEEE Trans. Biomed. Eng. 42(4):411–415PubMedCrossRefGoogle Scholar
  4. 4.
    Dandawate A. V., Giannakis G. B. (1994) Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Proc. 42(9):2355–2369CrossRefGoogle Scholar
  5. 5.
    Di Rienzo, M., G. Mancia and G. Parati et al. Methodology and Clinical Applications of Blood Pressure and Heart Rate Analysis. IOS Press, 1999.Google Scholar
  6. 6.
    Gardner, W. A. Statistical spectral estimation, A nonprobabilistic approach. Prentice Hall, 1988.Google Scholar
  7. 7.
    Giannakis G. B., Zhou G. (1995) Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans. Signal Proc. 43(9):2217–2221CrossRefGoogle Scholar
  8. 8.
    Hirsch, J. A., Bishop B. (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241:H620–H629PubMedGoogle Scholar
  9. 9.
    Kaplan, D. T. Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. In: Frontiers of Blood Pressure and Heart Rate Analysis, edited by M. Di Rienzo et al. IOS Press, pp. 15–28, 1997.Google Scholar
  10. 10.
    Kitney R. I., Fulton T., McDonald A., Linkens D. (1985) Transient interaction between blood pressure, respiration and heart rate in man. J. Biomed. Eng. 7:217–224PubMedCrossRefGoogle Scholar
  11. 11.
    Malik, M., and A. Camm. Heart Rate Variability. Futura Pub. Co, 1995.Google Scholar
  12. 12.
    Malliani A., Pagani M., Lombardi F., Cerutti S. (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492PubMedGoogle Scholar
  13. 13.
    Marmarelis V. Z. Nonlinear Dynamic Modeling of Physiological Systems. IEEE Press, 2004.Google Scholar
  14. 14.
    Nikias C. L., and A. P. Petropulu Higher order spectral analysis, a nonlinear signal processing. Prentice Hall, 1993.Google Scholar
  15. 15.
    Pagani, M., Lombardi, F., Guzzetti, S. et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2):178–193.PubMedGoogle Scholar
  16. 16.
    Pyetan E., Akselrod S. (2006) Do the High-Frequency Indexes of HRV Provide a Faithful Assessment of Cardiac Vagal Tone? A Critical Theoretical Evaluation. IEEE Trans. Biomed. Eng. 50:777–783CrossRefGoogle Scholar
  17. 17.
    Saul J. P., Berger R. D., Albrecht P., Stein S. P., Chen M. H., Cohen R. J. (1991) Transfer function analysis of the circulation: Unique insights into cardiovascular regulation. Am. J. Physiol. 91:H1231–H1245Google Scholar
  18. 18.
    Schmidt, G. and G. E. Morfill Nonlinear methods for heart rate variability assessment. In: M. Malik and Camm A. J. (eds.) Heart Rate Variability. Futura Pub. Co., Chapter 7, pp. 87–98, 1995.Google Scholar
  19. 19.
    Seydnejad S., Kitney R. I. (1997) Real time heart rate variability extraction using the Kaiser window. IEEE Trans. Biomed. Eng. 44:990–1005PubMedCrossRefGoogle Scholar
  20. 20.
    Seydnejad S. R., R. I. Kitney. Investigation of HRV and BPV by a nonlinear closed loop model. In: Clinical Applications of Heart Rate Variability and Blood Pressure Variation, edited by M. Di Rienzo et al. IOS Press, Chap. 9, 1999.Google Scholar
  21. 21.
    Seydnejad S., Kitney R.I. (1999) Detection of nonlinearity in HRV using cyclostationary analysis. Proc. IEEE 21st EMBS Conf. 2:993Google Scholar
  22. 22.
    Signorini, M.G. and S. Cerutti Lyapunov exponents calculated from heart rate variability time series. Proc. 16th IEEE Eng Medicine & Bio. Vol. 1, pp. 119–120, 1994.Google Scholar
  23. 23.
    Silipo R., Deco G., Gremigni C. (1999) A characterization of HRV’s nonlinear hidden dynamics by means of Markov model. IEEE Trans. Biomed. Eng. 46:978–986PubMedCrossRefGoogle Scholar
  24. 24.
    Takalo R. Variability of Blood Pressure and Heart Rate in Borderline and Mild Hypertension. Uppsala University Press, 1999.Google Scholar
  25. 25.
    Zhong Y., Wang H., Ju K., Jan K., Chon K. H. (2004) Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes. IEEE Trans. Biomed. Eng. 43(51):255–262CrossRefGoogle Scholar
  26. 26.
    Zhou, G. and G. B. Giannakis. Estimating coupled harmonics in additive and multiplicative noise. Proc. 27th ASILOMAR Conf. Signals, Syst., Comp. Pacific Grove, CA, pp. 1250–1254, Nov. 1993.Google Scholar
  27. 27.
    Zhou G., Giannakis G.B. (1995) Retrieval of self-coupled harmonics. IEEE Trans. Signal Proc. 43(5):1173–1186CrossRefGoogle Scholar
  28. 28.
    Zhou G., Giannakis G. B. (1995) Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. Signal Proc. 43(6):1445–1460CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Division of Medical DevicesUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Division of Medical DevicesUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations