Annals of Biomedical Engineering

, Volume 35, Issue 4, pp 659–671 | Cite as

A Computational Parameter Study of Embryo Transfer



Embryo transfer (ET) is the final component of the in vitro fertilization process, and the limiting component to its success rate. The procedure is characterized by considerable technical variations in clinical practice and the effects of these different variations on the overall outcome is little understood. In this article we simulate the embryo transfer procedure based on a 2-dimensional fluid dynamics model and, in a large computational effort, we investigate the sensitivity of embryo placement on an array of procedural parameters. The results support the consensus among practitioners in what is the best choice of procedural factors. Based on the study we propose a set of optimal parameters with which to perform the ET procedure; in addition we suggest a novel technique of volume replacement prior to the catheter withdrawal.


Embryo implantation Uterine transport Fluid dynamics simulation Catheter volume replacement In vitro fertilization 



The authors are grateful to Professor Albert Milani for his interest, suggestions and encouragements.


  1. 1.
    Allen W. R., Butler C. A., Mackley M. R. (2002) Rheological characterization of estrous uterine fluid in the mare. Theriogenology 58:503–506CrossRefGoogle Scholar
  2. 2.
    Baba K., Ishihara O., Hayashi N., Saitoh M., Taya J., Kinoshita K. (2000) Where does the embryo implant after embryo transfer in humans? Fertil. Steril. 73:123–125PubMedCrossRefGoogle Scholar
  3. 3.
    Bilalis, D., S. A. Marangou, N. Polidoropoulus, P. Sissi, M. Argyrou, S. Doriza, S. Davies, A. Antonakopoulus, and M. Mastrominas. Use of different loading techniques for embryo transfer increasing the risk of ectopic pregnancy. Human Reprod. (Abstract Book, P-479), 17, 162, 2002.Google Scholar
  4. 4.
    Ebner T., Yaman C., Moser M., Sommergruber M., Polz W., Tews G. (2001) The ineffective loading process of the embryo transfer catheters alters implantation and pregnancy rates. Fertil. Steril. 76:630–632PubMedCrossRefGoogle Scholar
  5. 5.
    Eytan O., Elad D., Zaretzky U., Jaffa A. J. (2004) A glance into the uterus during in vitro simulation. Human Reprod. 19:562–569CrossRefGoogle Scholar
  6. 6.
    Fauci L. J., Dillon R. (2006) Fluid mechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–394CrossRefGoogle Scholar
  7. 7.
    Griebel, M., T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid Dynamics, A Practical Approach. Society for Industrial and Applied Mathematics Press, Philadelphia, 1998.Google Scholar
  8. 8.
    Kovacs G. T. (1999) What factors are important far successful embryo transfer after in vitro fertilization? Human Reprod. 14:590–592CrossRefGoogle Scholar
  9. 9.
    Lozeau A.M., Potter B. (2005) Diagnosis and management of ectopic pregnancy. Am. Fam. Physician 72:1707–1714PubMedGoogle Scholar
  10. 10.
    Meldrum D. R., Chetkowski R., Steingold K. A., de Ziegler D., Cedras M. H., Hamilton M. (1987) Evolution of a highly successful in vitro fertilization – embryo transfer program. Fertil. Steril. 48:86–93PubMedGoogle Scholar
  11. 11.
    Schoolcraft W. B., Surrey E. S., Gardner D. K. (2001) Embryo transfer: technics and variables affecting success. Fertil. Steril. 76:863–870PubMedCrossRefGoogle Scholar
  12. 12.
    Yaniv S., Elad D., Jaffa A.J., Eytan O. (2003) Biofluid aspects of embryo transfer. Ann. Biomed. Eng. 31:1255–1262PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of Wisconsin–MilwaukeeMilwaukeeUSA
  2. 2.Reproductive Endocrinology and InfertilityUniversity of California–San FranciscoSan FranciscoUSA

Personalised recommendations