Annals of Biomedical Engineering

, Volume 35, Issue 4, pp 615–630 | Cite as

Protein Transport to Choroid and Retina following Periocular Injection: Theoretical and Experimental Study

  • Feilim Mac Gabhann
  • Anna Maria Demetriades
  • Tye Deering
  • Jonathan D. Packer
  • Syed Mahmood Shah
  • Elia Duh
  • Peter A. Campochiaro
  • Aleksander S. Popel
Article

Abstract

Ocular neovascularization is a major cause of blindness in several diseases including age-related macular degeneration (choroidal neovascularization) and diabetic retinopathy (retinal neovascularization). Antiangiogenic agents with clinically significant effects exist, but a key question remains: how to effectively deliver drugs to the site of neovascularization. Periocular delivery of drugs or proteins is less invasive and safer than intravitreous delivery, but little is known regarding how and to what extent agents access intraocular tissues after periocular injection. We present a computational model of drug or protein transport into the eye following periocular injection to quantify movement of macromolecules across the sclera of the mouse eye. We apply this model to the movement of green fluorescent protein (GFP) across the mouse eye and fit the results of in vivo experiments to find transport parameters. Using these parameters, the model gives the profile of interstitial GFP concentration across the sclera, choroid and retina. We compare this to predictions of transport following intravitreous injections. We then scale up the model to estimate the transport of GFP into the human choroid and retina; the thicker sclera decreases transscleral delivery. This is the first model of ocular drug delivery to explicitly account for transport properties of each eye layer.

Keywords

Drug delivery Mathematical model Angiogenesis Anti-angiogenic drug Green fluorescent protein Diffusion 

References

  1. 1.
    Alamouti B., J. Funk. Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87: 899–901, 2003PubMedCrossRefGoogle Scholar
  2. 2.
    Ambati J., C. S. Canakis, J. W. Miller, E. S. Gragoudas, A. Edwards, D. J. Weissgold, I. Kim, F. C. Delori, A. P. Adamis. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41: 1181–1185, 2000PubMedGoogle Scholar
  3. 3.
    Ambati J., E. S. Gragoudas, J. W. Miller, T. T. You, K. Miyamoto, F. C. Delori, A. P. Adamis. Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci. 41: 1186–91, 2000PubMedGoogle Scholar
  4. 4.
    Ames, A. 3rd, and F. B. Nesbett. Intracellular and extracellular compartments of mammalian central nervous tissue. J. Physiol. 184:215–238, 1966Google Scholar
  5. 5.
    Ban Y., L. J. Rizzolo. A culture model of development reveals multiple properties of RPE tight junctions. Mol. Vis. 3:18, 1997PubMedGoogle Scholar
  6. 6.
    Berk D. A., F. Yuan, M. Leunig, R. K. Jain Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys. J. 65: 2428–2436, 1993PubMedGoogle Scholar
  7. 7.
    Busch N. A., T. Kim, V. A. Bloomfield. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules 33: 5932–5937, 2000CrossRefGoogle Scholar
  8. 8.
    Campochiaro P. A., P. Soloway, S. J. Ryan, J. W. Miller. The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Mol. Vis. 5: 34, 1999PubMedGoogle Scholar
  9. 9.
    De Azeredo F. A., H. Martins-Ferreira. Changes in fluid compartments and ionic composition in the isolated chick retina during SD. Neurochem. Res. 4: 99–107, 1979PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards A., M. R. Prausnitz. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J. 44: 214–225, 1998CrossRefGoogle Scholar
  11. 11.
    el-Kareh A. W., S. L. Braunstein, T. W. Secomb. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys. J. 64: 1638–1646, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Ethier C. R., M. Johnson, J. Ruberti. Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng. 6: 249–273, 2004PubMedCrossRefGoogle Scholar
  13. 13.
    Gehlbach P., A. M. Demetriades, S. Yamamoto, T. Deering, E. J. Duh, H. S. Yang, C. Cingolani, H. Lai, L. Wei, P. A. Campochiaro Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 10: 637–646, 2003PubMedCrossRefGoogle Scholar
  14. 14.
    Gehlbach P., A. M. Demetriades, S. Yamamoto, T. Deering, W. H. Xiao, E. J. Duh, H. S. Yang, H. Lai, I. Kovesdi, M. Carrion, L. Wei, P. A. Campochiaro, Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier. Hum. Gene Ther. 14: 129–141, 2003PubMedCrossRefGoogle Scholar
  15. 15.
    Geiger R. C., C. M. Waters, D. W. Kamp, M. R. Glucksberg. KGF prevents oxygen-mediated damage in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 46: 3435–3442, 2005PubMedCrossRefGoogle Scholar
  16. 16.
    Gragoudas E. S., A. P. Adamis, E. T. Cunningham Jr., M. Feinsod, D. R. Guyer. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351: 2805–2816, 2004PubMedCrossRefGoogle Scholar
  17. 17.
    Inomata H., A. Bill. Exit sites of uveoscleral flow of aqueous humor in cynomolgus monkey eyes. Exp. Eye Res. 25: 113–118, 1977PubMedCrossRefGoogle Scholar
  18. 18.
    Jain R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47: 3039–3051, 1987PubMedGoogle Scholar
  19. 19.
    Kamei M., K. Misono, H. Lewis. A study of the ability of tissue plasminogen activator to diffuse into the subretinal space after intravitreal injection in rabbits. Am. J. Ophthalmol. 128: 739–746, 1999PubMedCrossRefGoogle Scholar
  20. 20.
    Kim Y. R., M. D. Savellano, D. H. Savellano, R. Weissleder, A. Bogdanov Jr. Measurement of tumor interstitial volume fraction: method and implication for drug delivery. Magn. Reson. Med. 52: 485–494, 2004PubMedCrossRefGoogle Scholar
  21. 21.
    Maurice D. M., J. Polgar. Diffusion across the sclera. Exp. Eye Res. 25: 577–582, 1977PubMedCrossRefGoogle Scholar
  22. 22.
    Moore D. J., G. M. Clover. The effect of age on the macromolecular permeability of human Bruch’s membrane. Invest. Ophthalmol. Vis. Sci. 42: 2970–2975, 2001PubMedGoogle Scholar
  23. 23.
    Mordenti J., R. A. Cuthbertson, N. Ferrara, K. Thomsen, L. Berleau, V. Licko, P. C. Allen, C. R. Valverde, Y. G. Meng, D. T. Fei, K. M. Fourre, A. M. Ryan. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol. Pathol. 27: 536–544, 1999PubMedGoogle Scholar
  24. 24.
    Mordenti J., K. Thomsen, V. Licko, L. Berleau, J. W. Kahn, R. A. Cuthbertson, E. T. Duenas, A. M. Ryan, C. Schofield, T. W. Berger, Y. G. Meng, J. Cleland. Intraocular pharmacokinetics and safety of a humanized monoclonal antibody in rabbits after intravitreal administration of a solution or a PLGA microsphere formulation. Toxicol. Sci. 52: 101–106, 1999PubMedCrossRefGoogle Scholar
  25. 25.
    Olsen T. W., S. Y. Aaberg, D. H. Geroski, H. F. Edelhauser. Human sclera: thickness and surface area. Am. J. Ophthalmol. 125: 237–241, 1998PubMedCrossRefGoogle Scholar
  26. 26.
    Olsen T. W., H. F. Edelhauser, J. I. Lim, D. H. Geroski. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest. Ophthalmol. Vis. Sci. 36: 1893–1903, 1995PubMedGoogle Scholar
  27. 27.
    Olsen T. W., S. Sanderson, X. Feng, W. C. Hubbard. Porcine sclera: Thickness and surface area. Invest. Ophthalmol. Vis. Sci. 43: 2529–2532, 2002PubMedGoogle Scholar
  28. 28.
    Ormo M., A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, S. J. Remington. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392–1395, 1996PubMedCrossRefGoogle Scholar
  29. 29.
    Pitkanen L., V. P. Ranta, H. Moilanen, A. Urtti. Permeability of retinal pigment epithelium: Effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci. 46: 641–646, 2005PubMedCrossRefGoogle Scholar
  30. 30.
    Ramrattan R. S., T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, P. T. de Jong. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest. Ophthalmol. Vis. Sci. 35: 2857–2864, 1994PubMedGoogle Scholar
  31. 31.
    Rosenfeld P. J., N. Villate, W. J. Feuer, C. A. Puliafito, E. R. McCluskey. RhuFab V2 (Anti-VEGF Antibody Fragment) in Neovascular AMD: Safety, tolerability, and efficacy of multiple, escalating dose intravitreal injections. Invest. Ophthalmol. Vis. Sci. 44 (suppl): 970, 2003Google Scholar
  32. 32.
    Squire J. M., M. Chew, G. Nneji, C. Neal, J. Barry, C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: A possible explanation for molecular filtering? J. Struct. Biol. 136: 239–255, 2001PubMedCrossRefGoogle Scholar
  33. 33.
    Takahashi K., Y. Saishin, R. L. Silva, Y. Oshima, S. Oshima, M. Melia, B. Paszkiet, D. Zerby, M. J. Kadan, G. Liau, M. Kaleko, S. Connelly, T. Luo, P.A. Campochiaro Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J. 17: 896–898, 2003PubMedGoogle Scholar
  34. 34.
    Wang Z., Q. Zhang. Transport of proteins and peptides across human cultured alveolar A549 cell monolayer. Int. J. Pharm. 269: 451–456, 2004PubMedCrossRefGoogle Scholar
  35. 35.
    Wiig H., M. DeCarlo, L. Sibley, E. M. Renkin. Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. Am. J. Physiol. 263: H1222–1233, 1992PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  • Feilim Mac Gabhann
    • 1
  • Anna Maria Demetriades
    • 2
  • Tye Deering
    • 2
  • Jonathan D. Packer
    • 1
  • Syed Mahmood Shah
    • 2
  • Elia Duh
    • 2
  • Peter A. Campochiaro
    • 2
  • Aleksander S. Popel
    • 1
  1. 1.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.The Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations