Annals of Biomedical Engineering

, Volume 35, Issue 3, pp 375–386 | Cite as

Adhesion and Function of Human Endothelial Cells Co-cultured on Smooth Muscle Cells

  • Charles Stevenson Wallace
  • John C. Champion
  • George A. TruskeyEmail author


To evaluate interactions between human endothelial cells (ECs) and smooth muscle cells (SMCs) for the development of tissue-engineered vessels, we examined the adhesion and key cell properties of human ECs grown on quiescent human aortic SMCs. ECs attached to SMCs spread more slowly than ECs attached to fibronectin surfaces, and ECs aligned along the direction of the SMCs. ECs attached firmly and less than 5% of the cells were removed by shear stresses as high as 300 dyn cm−2. Unlike porcine SMCs and co-cultures, human SMCs or co-cultures do not contract under flow, and the human ECs and SMCs in co-culture align toward the direction of flow. A confluent endothelium could be maintained in co-culture for over 30 days, and some of the ECs reoriented perpendicular to the SMCs after 9 days in static culture. Surface tissue factor levels in ECs and SMCs were less in co-culture than in monoculture. Co-culture induced an increase in calponin expression in SMCs. These findings show that human co-cultures can be maintained for long culture periods, where the endothelium remains confluent and responds to long-term exposure to flow, and EC–SMC interactions lead to an increase in SMC differentiation and an EC surface that is less thrombotic.


Tissue engineering Flow Tissue factor Differentiation In vitro 



The authors would like to thank Zhengyu Pang and Jeffrey LaMack for their technical advice. This work was supported by NIH Grant R21HL 72189.


  1. 1.
    Ainslie K. M., Garanich J. S., Dull R. O., J. M. Tarbell Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response. J. Appl. Physiol. 98:242–249, 2005PubMedCrossRefGoogle Scholar
  2. 2.
    Bhat V. D., G. A. Truskey, W. M. Reichert. Fibronectin and avidin–biotin as a heterogeneous ligand system for enhanced endothelial cell adhesion. J. Biomed. Mater. Res. 41:377–385, 1998PubMedCrossRefGoogle Scholar
  3. 3.
    Brown D. J., E. M. Rzucidlo, B. L. Merenick, R. J. Wagner, K. A. Martin, R. J. Powell. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation. J. Vasc. Surg. 41:509–516, 2005PubMedCrossRefGoogle Scholar
  4. 4.
    Brown, M., C. S. Wallace, and G. A. Truskey. Vascular Endothelium. In: Wiley Encyclopedia of Biomedical Engineering, edited by M. Akay. Indianapolis, IN: Wiley Publishing Inc., 2006Google Scholar
  5. 5.
    Chan B. P., W. Liu, B. Klitzman, W. M. Reichert, G. A. Truskey. In vivo performance of dual ligand augmented endothelialized expanded polytetrafluoroethylene vascular grafts. J. Biomed. Mater. Res. B Appl. Biomater. 72:52–63, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Chiu J. J., L. J. Chen, C. N. Chen, P. L. Lee, C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539, 2004PubMedCrossRefGoogle Scholar
  7. 7.
    Civelek M., K. Ainslie, J. S. Garanich, J. M. Tarbell. Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism. J. Appl. Physiol. 93:1907–1917, 2002PubMedGoogle Scholar
  8. 8.
    Davies P. F., G. A. Truskey, H. B. Warren, S. E. O’Connor, B. H. Eisenhaure. Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: Changes in low density lipoprotein metabolism. J. Cell. Biol. 101:871–879, 1985PubMedCrossRefGoogle Scholar
  9. 9.
    Fillinger M. F., L. N. Sampson, J. L. Cronenwett, R. J. Powell, R. J. Wagner. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. 67:169–178, 1997PubMedCrossRefGoogle Scholar
  10. 10.
    George E. L., E. N. Georges-Labouesse, R. S. Patel-King, H. Rayburn, R. O. Hynes. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091, 1993PubMedGoogle Scholar
  11. 11.
    Ghrib F., A. C. Brisset, D. Dupouy, A. D. Terrisse, C. Navarro, Y. Cadroy, B. Boneu, P. Sie. The expression of tissue factor and tissue factor pathway inhibitor in aortic smooth muscle cells is up-regulated in synthetic compared to contractile phenotype. Thromb. Haemost. 87:1051–1056, 2002PubMedGoogle Scholar
  12. 12.
    Heydarkhan-Hagvall S., S. Chien, S. Nelander, Y. C. Li, S. Yuan, J. Lao, J. H. Haga, I. Lian, P. Nguyen, B. Risberg, Y. S. Li. DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Mol. Cell. Biochem. 281:1–15, 2006PubMedCrossRefGoogle Scholar
  13. 13.
    Heydarkhan-Hagvall S., G. Helenius, B. R. Johansson, J. Y. Li, E. Mattsson, B. Risberg. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J. Cell. Biochem. 89:1250–1259, 2003PubMedCrossRefGoogle Scholar
  14. 14.
    Jude B., C. Zawadzki, S. Susen, D. Corseaux. Relevance of tissue factor in cardiovascular disease. Arch. Mal. Coeur. Vaiss. 98:667–671, 2005PubMedGoogle Scholar
  15. 15.
    Korff T., S. Kimmina, G. Martiny-Baron, H. G. Augustin. Blood vessel maturation in a 3-dimensional spheroidal coculture model: Direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 15:447–457, 2001PubMedCrossRefGoogle Scholar
  16. 16.
    Lavender M. D., Z. Pang, C. S. Wallace, L. E. Niklason, G. A. Truskey. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 26:4642–4653, 2005PubMedCrossRefGoogle Scholar
  17. 17.
    Lewis J. C., N. L. Jones, M. I. Hermanns, O. Rohrig, C. L. Klein, C. J. Kirkpatrick. Tissue factor expression during coculture of endothelial cells and monocytes. Exp. Mol. Pathol. 62:207–218, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Lo C. M., H. B. Wang, M. Dembo, Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell S. L., L. E. Niklason. Requirements for growing tissue-engineered vascular grafts. Cardiovasc. Pathol. 12:59–64, 2003PubMedCrossRefGoogle Scholar
  20. 20.
    Nackman, G. B., F. R. Bech, M. F. Fillinger, R. J. Wagner, and J. L. Cronenwett. Endothelial cells modulate smooth muscle cell morphology by inhibition of transforming growth factor-beta 1 activation. Surgery 120:418–425; discussion 425–416, 1996Google Scholar
  21. 21.
    Niklason L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999PubMedCrossRefGoogle Scholar
  22. 22.
    Niwa K., T. Kado, J. Sakai, T. Karino. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC–SMC coculture. Ann. Biomed. Eng. 32:537–543, 2004PubMedCrossRefGoogle Scholar
  23. 23.
    Pang Z., D. A. Antonetti, J. M. Tarbell. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann. Biomed. Eng. 33:1536–1545, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Powell R. J., J. Bhargava, M. D. Basson, B. E. Sumpio. Coculture conditions alter endothelial modulation of TGF-beta 1 activation and smooth muscle growth morphology. Am. J. Physiol. 274:H642–H649, 1998PubMedGoogle Scholar
  25. 25.
    Powell R. J., J. L. Cronenwett, M. F. Fillinger, R. J. Wagner, L. N. Sampson. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann. Vasc. Surg. 10:4–10, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    Rainger G. E., P. Stone, C. M. Morland, G. B. Nash. A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J. Immunol. Methods 255:73–82, 2001PubMedCrossRefGoogle Scholar
  27. 27.
    RayChaudhury A., M. Elkins, D. Kozien, M. T. Nakada. Regulation of PECAM-1 in endothelial cells during cell growth and migration. Exp. Biol. Med. (Maywood) 226:686–691, 2001Google Scholar
  28. 28.
    Sato Y. Activation of latent TGF-beta at the vascular wall-roles of endothelial cells and mural pericytes or smooth muscle cells. J. Atheroscler. Thromb. 2:24–29, 1995PubMedGoogle Scholar
  29. 29.
    Sato Y., F. Okada, M. Abe, T. Seguchi, M. Kuwano, S. Sato, A. Furuya, N. Hanai, T. Tamaoki. The mechanism for the activation of latent TGF-beta during co-culture of endothelial cells and smooth muscle cells: Cell-type specific targeting of latent TGF-beta to smooth muscle cells. J. Cell. Biol. 123:1249–1254, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Sato Y., R. Tsuboi, R. Lyons, H. Moses, D. B. Rifkin. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J. Cell. Biol. 111:757–763, 1990PubMedCrossRefGoogle Scholar
  31. 31.
    Truskey G. A., J. S. Pirone. The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces. J. Biomed. Mater. Res. 24:1333–1353, 1990PubMedCrossRefGoogle Scholar
  32. 32.
    van Buul-Wortelboer M. F., H. J. Brinkman, K. P. Dingemans, P. G. de Groot, W. G. van Aken, J. A. van Mourik. Reconstitution of the vascular wall in vitro. A novel model to study interactions between endothelial and smooth muscle cells. Exp. Cell. Res. 162:151–158, 1986PubMedCrossRefGoogle Scholar
  33. 33.
    Wada Y., A. Sugiyama, T. Kohro, M. Kobayashi, M. Takeya, M. Naito, T. Kodama. In vitro model of atherosclerosis using coculture of arterial wall cells and macrophage. Yonsei Med. J. 41:740–755, 2000PubMedGoogle Scholar
  34. 34.
    Yang J. T., H. Rayburn, R. O. Hynes. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105, 1993PubMedGoogle Scholar
  35. 35.
    Zhang J. C., Q. Ruan, L. Paucz, A. Fabry, B. R. Binder, J. Wojta. Stimulation of tissue factor expression in human microvascular and macrovascular endothelial cells by cultured vascular smooth muscle cells in vitro. J. Vasc. Res. 36:126–132, 1999PubMedCrossRefGoogle Scholar
  36. 36.
    Ziegler T., R. W. Alexander, R. M. Nerem. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225, 1995PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • Charles Stevenson Wallace
    • 1
  • John C. Champion
    • 1
  • George A. Truskey
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations