Advertisement

Annals of Biomedical Engineering

, Volume 35, Issue 2, pp 201–207 | Cite as

Scaling Characteristics of Heart Rate Time Series Before the Onset of Ventricular Tachycardia

  • Mathias BaumertEmail author
  • Niels Wessel
  • Alexander Schirdewan
  • Andreas Voss
  • Derek Abbott
Article

Abstract

Ventricular tachycardia (VT) provokes sudden cardiac death (SCD), which is a major cause of mortality in developed countries. Implantable cardioverter-defibrillators (ICDs) are an efficient therapy for SCD prevention. In this study we analyze heart rate variability (HRV) in data stored by ICDs.

In 29 patients exhibiting VT episodes, the last 1000 normal beat-to-beat intervals are analyzed and compared to an individually acquired control time series (CON). HRV analysis is performed with standard parameters of time and frequency domain as suggested by the HRV Task Force. For scaling analyses of heart rate time series, the fractal dimension is analysed, applying Higuchi’s algorithm (HFD). Furthermore, detrended fluctuation analysis (DFA) is performed.

None of the standard HRV parameters shows significant differences between CON and VT. Before the onset of VT, the scaling characteristics by means of HFD and DFA are significantly changed.

In conclusion, scaling analysis reveals changes in autonomic heart rate modulation preceding VT.

Keywords

Implantable cardioverter defibrillators Heart rate variability Fractal dimension Detrended fluctuation analysis 

Notes

Acknowledgments

This study was supported by grants form the Deutsche Forschungsgemeinschaft (DFG Vo505/3-1 and DFG Vo505/4-2) and the Australian Research Council (DP0663345).

References

  1. 1.
    Baumert M., Baier V., Haueisen J., Wessel N., Meyerfeldt U., Schirdewan A., Voss A. (2004) Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf. Med. 43(2):202–206PubMedGoogle Scholar
  2. 2.
    Baumert M., Baier V., Schirdewan A., Truebner S., Voss A. (2005) Short- and long-term joint symbolic dynamics of heart rate and blood pressure in dilated cardiomyopathy. IEEE Trans. Biomed. Eng. 52(12):2112–2115PubMedCrossRefGoogle Scholar
  3. 3.
    Baumert M., Baier V., Voss A. (2005) Long-term correlations and fractal dimension of beat-to-beat blood pressure dynamics. Fluct Noise Lett 5(4):L549–L555CrossRefGoogle Scholar
  4. 4.
    Baumert M., Brechtel L. M., Lock, Voss A., Abbott D. (2006) Scaling graphs of heart rate time series in athletes demonstrating the VLF, LF and HF regions. Physiol Meas 27:N35-N39PubMedCrossRefGoogle Scholar
  5. 5.
    Cesar, A., and D. P. Zipes. Who needs an ICD? ACC curr. j. rev. 77–80, 2002Google Scholar
  6. 6.
    Copie X., Piot O., Said M. A., Lavergne T., Ollitrault J., Guize L., Le Heuzey J. Y. (2000) Temporal and geographical trends in indications for implantation of cardiac defibrillators in Europe 1993–1998. Medtronic ICD system investigators. Pacing Clin. Electrophysiol. 23(6):979–984PubMedCrossRefGoogle Scholar
  7. 7.
    Favale S., Nacci F., Galati A., Accogli M., De Giorgi V., Greco M.R., Nastasi M., Pierfelice O., Rossi S., Gargaro A. (2001) Electrogram width parameter analysis in implantable cardioverter defibrillators: Influence of body position and electrode configuration. Pacing Clin. Electrophysiol. 24(12):1732–1738PubMedCrossRefGoogle Scholar
  8. 8.
    Filipecki A., Trusz-Gluza M., Szydlo K., Giec L. (1996) Value of heart rate variability parameters for prediction of serious arrhythmic events in patients with malignant ventricular arrhythmias. Pacing Clin. Electrophysiol. 19(11 Pt 2):1852–1856PubMedCrossRefGoogle Scholar
  9. 9.
    Fogel R. I., Prystowsky E. N. (2000) Management of malignant ventricular arrhythmias and cardiac arrest. Crit. Care Med. 28 (10 Suppl):N165–169PubMedCrossRefGoogle Scholar
  10. 10.
    Gao J., J. Hu, W. W. Tung, Y.Cao, N. Sarshar, and V. P. Roychowdhury. Assessment of long-range correlations in time series: How to avoid pitfalls. Phys. Rev. E 73, 016117, 2006Google Scholar
  11. 11.
    Goldberger A. L. (1996) Non-linear dynamics for clinican: Chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314PubMedCrossRefGoogle Scholar
  12. 12.
    Higuchi T. (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283CrossRefGoogle Scholar
  13. 13.
    Higuchi T. (1990) Relationship between the fractal dimension and the power law index for a time series: A numerical investigation. Physica D 46:254–264CrossRefGoogle Scholar
  14. 14.
    http://www.medtronic.comGoogle Scholar
  15. 15.
    Ho K. K., Moody G. B., Peng C. K., Mietus J. E., Larson M. G., Levy D., Goldberger A. L. (1997) Predicting survival in heart failure case and control subjects by useful automated methods. Circulation 96:842–848PubMedGoogle Scholar
  16. 16.
    Hoffmann J., Grimm W., Menz V., Knop U., Maisch B. (1996) Heart rate variability and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. Pacing Clin. Electrophysiol. 19(11 Pt 2):1841–1844PubMedCrossRefGoogle Scholar
  17. 17.
    Huikuri H. V., Seppanen T., Koistinen M. J., Airaksinen J., Ikaheimo M. J., Castellanos A., Myerburg R. K. (1996) Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation 93(10):1836–1844PubMedGoogle Scholar
  18. 18.
    Kettering K., Dornberger V., Lang R., Vonthein R., Suchalla R., Bosch R. F., Mewis C., Eigenberger B., Kuhlkamp V. (2001) Enhanced detection criteria in implantable cardioverter defibrillators: sensitivity and specificity of the stability algorithm at different heart rates. Pacing Clin. Electrophysiol. 24(9 Pt 1):1325–1333PubMedCrossRefGoogle Scholar
  19. 19.
    Lombardi F., Porta A., Marzegalli M., Favale S., Santini M., Vincenti A., De Rosa A. (2000) Heart rate variability patterns before ventricular tachycardia onset in patients with an implantable cardioverter defibrillator. Participating investigators of ICD-HRV Italian study group. Am. J. Cardiol. 86(9):959–963PubMedCrossRefGoogle Scholar
  20. 20.
    Mani V., Wu X., Wood M. A., Ellenbogen K. A., Hsia P. W. (1999) Variation of spectral power immediately prior to spontaneous onset of ventricular tachycardia/ventricular fibrillation in implantable cardioverter defibrillator patients. J. Cardiovasc. Electrophysiol. 10(12):1586–1596PubMedCrossRefGoogle Scholar
  21. 21.
    Meyerfeldt U., Wessel N., Schutt H., Selbig D., Schumann A., Voss A., Kurths J., Ziehmann C., Dietz R., Schirdewan A. (2002) Heart rate variability before the onset of ventricular tachycardia: Differences between slow and fast arrhythmias. Int. J. Cardiol. 84(2–3):141–151PubMedCrossRefGoogle Scholar
  22. 22.
    Nemec J., Hammill S. C., Shen W. K. (1999) Increase in heart rate precedes episodes of ventricular tachycardia and ventricular fibrillation in patients with implantable cardioverter defibrillators: analysis of spontaneous ventricular tachycardia database. Pacing Clin. Electrophysiol. 22(12):1729–1738PubMedCrossRefGoogle Scholar
  23. 23.
    Osaka M., Saitoh H., Sasabe N., Atarashi H., Katoh T., Hayakawa H., Cohen R. J. (1996) Changes in autonomic activity preceding onset of nonsustained ventricular tachycardia. Ann. Noninvasive Electrocardiol. 1(1):3–11PubMedCrossRefGoogle Scholar
  24. 24.
    Peng C. K., Buldyrev S. V., Goldberger A. L., Havlin S., Sciortino F., Simons M., Stanley H. E. (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170PubMedCrossRefGoogle Scholar
  25. 25.
    Peng C. K., Havlin S., Stanley H. E., Goldberger A. L. (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87PubMedCrossRefGoogle Scholar
  26. 26.
    Peters R. W., Gold M. R. (2001) Implantable cardiac defibrillators. Med. Clin. North. Am. 85(2):343–367PubMedCrossRefGoogle Scholar
  27. 27.
    Pompe B., Blidh P., Hoyer D., Eiselt M. (1998) Using mutual information to measure coupling in the cardiorespiratory system. IEEE Eng. Med. Biol. Mag. 17(6):32–39PubMedCrossRefGoogle Scholar
  28. 28.
    Pruvot E., Thonet G., Vesin J. M., van-Melle G., Seidl K., Schmidinger H., Brachmann J., Jung W., Hoffmann E., Tavernier R., Block M., Podczeck A., Fromer M. (2000) Heart rate dynamics at the onset of ventricular tachyarrhythmias as retrieved from implantable cardioverter-defibrillators in patients with coronary artery disease. Circulation 23:2398–2404Google Scholar
  29. 29.
    Schaumann, A., F. von zur Muhlen, B. D. Gonska, and H. Kreuzer. Enhanced detection criteria in implantable cardioverter-defibrillators to avoid inappropriate therapy. Am. J. Cardiol. 12;78(5A):42–50 1996Google Scholar
  30. 30.
    Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3):354–381, 1996Google Scholar
  31. 31.
    Voss A., Baier V., Schumann A., Hasart A., Reinsperger F., Schirdewan A., Osterziel K. J., Leder U. (2002) Postextrasystolic regulation patterns of blood pressure and heart rate in patients with idiopathic dilated cardiomyopathy. J. Physiol. 538:271–278PubMedCrossRefGoogle Scholar
  32. 32.
    Voss A., Kurths J., Kleiner H.J., Witt A., Wessel N., Saparin P., Osterziel K. J., Schurath R., Dietz R. (1996) The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 31:419–433PubMedCrossRefGoogle Scholar
  33. 33.
    Vybiral T., Glaeser D. H., Goldberger A. L., Rigney D. R., Hess K. R., Mietus J., Skinner J. E., Francis M., Pratt C. M. (1993) Conventional heart rate variability analysis of ambulatory electrocardiographic recordings fails to predict imminent ventricular fibrillation. J. Am. Coll. Cardiol. 22(2):557–565PubMedCrossRefGoogle Scholar
  34. 34.
    Washizuka T., Chinushi M., Tagawa M., Kasai H., Watanabe H., Hosaka Y., Yamashita F., Furushima H., Abe A., Watanabe H., Hayashi J., Aizawa Y. (2001) Inappropriate discharges by fourth generation implantable cardioverter defibrillators in patients with ventricular arrhythmias. Jpn. Circ. J. 65(11):927–930PubMedCrossRefGoogle Scholar
  35. 35.
    Wessel N., Voss A., Malberg H., Ziehmann C., Voss H. U., Schirdewan A., Meyerfeldt U., Kurths J. (2000) Non-linear analysis of complex phenomena in cardiological data. Herzschrittmacherther. Elektrophysiol. 11(3):159–173CrossRefGoogle Scholar
  36. 36.
    Wessel N., Ziehmann C., Kurths J., Meyerfeldt U., Schirdewan A., Voss A. (2000) Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics 61(1):733–739PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • Mathias Baumert
    • 1
    • 2
    • 5
    Email author
  • Niels Wessel
    • 3
  • Alexander Schirdewan
    • 4
  • Andreas Voss
    • 2
  • Derek Abbott
    • 1
    • 5
  1. 1.Centre for Biomedical Engineering (CBME)The University of AdelaideAdelaideAustralia
  2. 2.Department of Medical EngineeringUniversity of Applied Sciences JenaJenaGermany
  3. 3.Institute of PhysicsUniversity of PotsdamPotsdamGermany
  4. 4.Medical Faculty of the CharitéFranz Volhard Clinic, Helios Klinikum-BerlinBerlinGermany
  5. 5.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia

Personalised recommendations