Annals of Biomedical Engineering

, Volume 35, Issue 1, pp 45–58

Optical Vibrocardiography: A Novel Tool for the Optical Monitoring of Cardiac Activity

  • Umberto Morbiducci
  • Lorenzo Scalise
  • Mirko De Melis
  • Mauro Grigioni


We present an optical non-contact method for heart beat monitoring, based on the measurement of chest wall movements induced by the pumping action of the heart, which is eligible as a surrogate of electrocardiogram (ECG) in assessing both cardiac rate and heart rate variability (HRV). The method is based on the optical recording of the movements of the chest wall by means of laser Doppler interferometry.

To this aim, the ECG signal and the velocity of vibration of the chest wall, named optical vibrocardiography (VCG), were simultaneously recorded on 10 subjects. The time series built from the sequences of consecutive R waves (on ECG) and vibrocardiographic (VV) intervals were compared in terms of heart rate (HR). To evaluate the ability of VCG signals as quantitative marker of the autonomic activity, HRV descriptors were also calculated on both ECG and VCG time series. HR and HRV indices obtained from the proposed method agreed with the rate derived from ECG recordings (mean percent difference <3.1%). Our comparison concludes that optical VCG provides a reliable assessment of HR and HRV analysis, with no statistical differences in term of gender are present. Optical VCG appears promising as non-contact method to monitor the cardiac activity under specific conditions, e.g., in magnetic resonance environment, or to reduce exposure risks to workers subjected to hazardous conditions. The technique may be used also to monitor subjects, e.g., severely burned, for which contact with the skin needs to be minimized.


Cardiac displacement Heart rate variability Laser Doppler vibrometry Electrocardiography 


  1. 1.
    Acharya R., Kumar A., Bhat P. S., Lim C. M., Iyengar S. S., Kannathal N., Krishnan S. M. (2004) Classification of cardiac abnormalities using heart rate signals. Med. Biol. Eng. Comput. 42(3):288–293CrossRefPubMedGoogle Scholar
  2. 2.
    Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. (1981) Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science 213:220–222CrossRefPubMedGoogle Scholar
  3. 3.
    American College of Cardiology Cardiovascular Technology Assessment Committee (1993) Heart rate variability for risk stratification of life-threatening arrhythmias. J. Am. Coll. Cardiol. 22: 948–950CrossRefGoogle Scholar
  4. 4.
    Augousti, A. T., F. X. Maletras, and J. Mason. Evaluation of cardiac monitoring using fiber optic plethysmography. Ann. Biomed. Eng. [DOI: 10.1007/s10439-006-9084-x] 2006Google Scholar
  5. 5.
    Bland, J. M. and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8:307–310, 1986Google Scholar
  6. 6.
    Castellini P., Scalise L., Tomasini E. P. (1999) Teeth mobility measurement: a laser vibrometry approach. Rev. Sci. Instrum. 70(6):2850–2855CrossRefGoogle Scholar
  7. 7.
    Constant I., Laude D., Murat I., Elghozi J. L. (1999) Pulse rate variability is not a surrogate for heart rate variability. Clin. Sci. 97: 391–397CrossRefPubMedGoogle Scholar
  8. 8.
    DeBoer R. W., Karemaker J. M., Strackee J. (1984) Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans. Biomed. Eng. 31(4):384–387PubMedGoogle Scholar
  9. 9.
    De Chazal P., O’Dwyer M., Reilly R. B. (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7):1196–1206CrossRefPubMedGoogle Scholar
  10. 10.
    Goldberger A. L. (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 6:87–91PubMedGoogle Scholar
  11. 11.
    Harland C. J., Clark T. D., Prance R. J. (2002) Electric potential probes – new directions in the remote sensing of the human body. Meas. Sci. Technol. 13(2):163–169CrossRefGoogle Scholar
  12. 12.
    Inouye T., Shinosaki K., Sakamoto H., Toi S., Ukai S., Iyama A., Katsuda Y., Hirano M. (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79(3):204–210CrossRefPubMedGoogle Scholar
  13. 13.
    Kamen P. W., Krum H., Tonkin A. M. (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity. Clin. Sci. 91:201–208PubMedGoogle Scholar
  14. 14.
    Kanal E., Shellock F. G. (1990) Burns associated with clinical MR examinations. Radiology 175 585PubMedGoogle Scholar
  15. 15.
    Kanal E., Shellock F. G. (1992) Patient monitoring during clinical MR imaging. Radiology 185(3):623–629PubMedGoogle Scholar
  16. 16.
    Kaplan D. T. (1994) The analysis of variability. J. Cardiovasc. Electrophysiol. 5:16–19PubMedGoogle Scholar
  17. 17.
    Kettenbach J., Kacher D. F., Koskinen S. K., Silverman S. G., Nabavi A., Gering D., Tempany C. M., Schwartz R. B., Kikinis R., Black P. M., Jolesz F. A. (2000) Interventional and intraoperative magnetic resonance imaging. Annu. Rev. Biomed. Eng. 2:661–690CrossRefPubMedGoogle Scholar
  18. 18.
    Kugel H., Bremer C., Puschel M., Fischbach R., Lenzen H., Tombach B., Van Aken H., Heindel W. (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur. Radiol. 13(4):690–694PubMedGoogle Scholar
  19. 19.
    Kuo C. D., Chen G. Y., Wang Y. Y., Hung M. J., Yang J. L. (2003) Characterization and quantification of the return map of RR intervals by Pearson coefficient in patients with acute myocardial infarction. Auton. Neurosci. 105(2):145–152CrossRefPubMedGoogle Scholar
  20. 20.
    Lee S. W., Fischer P. F., Loth F., Royston T. J., Grogand J. K., Bassiounyd H. S. (2005) Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20:837–852CrossRefGoogle Scholar
  21. 21.
    Malik, M., A. J. Camm (eds) (2004) Dynamic Electrocardiography. New York: Blackwell FuturaGoogle Scholar
  22. 22.
    Malliani A., Pagani M., Lombardi F., Cerutti S. (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:1482–1492Google Scholar
  23. 23.
    Matsui T., Arai I., Gotoh S., Hattori H., Takase B., Kikuchi M., Ishihara M. (2005) A novel apparatus for non-contact measurement of heart rate variability: a system to prevent secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, in monitoring sepsis or in predicting multiple organ dysfunction syndrome. Biomed. Pharmacother. 59 (Suppl 1):S188–S191CrossRefPubMedGoogle Scholar
  24. 24.
    Matsui T., Hagisawa K., Ishizuka T., Takase B., Ishihara M., Kikuchi M. (2004) A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans. Biomed. Eng. 51(12):2184–2188CrossRefPubMedGoogle Scholar
  25. 25.
    Migliaro E. R., Canetti R., Contreras P., Hakas M., Eirea G., Machado A. (2004) Short-term studies of heart rate variability: comparison of two methods for recording. Physiol. Meas. 25(6):N15–N20CrossRefPubMedGoogle Scholar
  26. 26.
    Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell’Orto S., Piccaluga E., et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2):178–193PubMedGoogle Scholar
  27. 27.
    Pan J., Tompkins W. J. (1985) Real Time QRS Detector algorithm. IEEE Trans. Biomed. Eng. 32(3):230–236PubMedGoogle Scholar
  28. 28.
    Pordy L., Chesky K., Master A. M., Taymor R.C, Moser M. (1952) The dual displacement and velocity ballistocardiograph apparatus. Am. Heart J. 44(2):248–256CrossRefPubMedGoogle Scholar
  29. 29.
    Rezek I. A., Roberts S. J. (1998) Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45(9): 1186–1191CrossRefPubMedGoogle Scholar
  30. 30.
    Rosowski J. J., Mehta R. P., Merchant S. N. (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol. Neurotol. 24(2):165–175CrossRefPubMedGoogle Scholar
  31. 31.
    Russell T. (2001) The management of burns. In: Ferrera P., Colucciello S., Marx J., Verdile V., Gibbs M. (eds) Trauma Management: An Emergency Medicine Approach. St. Louis (MO), Mosby, pp 549–565Google Scholar
  32. 32.
    Salerno D. M., Zanetti J., Green L., Mooney M., Madison J., Van Tassel R. (1991) Seismocardiographic changes associated with obstruction of coronary blood flow during balloon angioplasty. Am. J. Cardiol. 15;68(2):201–220CrossRefGoogle Scholar
  33. 33.
    Salerno D. M., Zanetti J. (1990) Seismocardiography: A new technique for recording cardiac vibrations. Concept, method and initial observations.J. Cardiovasc. Tech. 9,2: 111–118 Google Scholar
  34. 34.
    Scalise, L., P. Castellini, U. Morbiducci, C. Del Gaudio, G. D’Avenio, M. Grigioni, and E. P. Tomasini. Laser vibrometry to study prosthetic mechanical heart valves. Proceedings on XII Mediterranean Conference on Medical and Biological Engineering and Computing (available in CD rom) (2004)Google Scholar
  35. 35.
    Scalise, L., U. Morbiducci, and M. De Melis. A laser Doppler approach to cardiac motion monitoring: effects of surface and measurement position. Proceedings of SPIE VII International Conference on Vibration Measurements by Laser Techniques, 2006, 19–22 June, Ancona, Italy, 6345: 0D1-0D11Google Scholar
  36. 36.
    Schwartz P. J., Priori S. G. (1990) Sympathetic nervous system and cardiac arrhythmias. In: Zipes D. P, Jalife J. (eds) Cardiac Electrophysiology. From Cell to Bedside. Philadelphia, W.B. Saunders, pp 330–343Google Scholar
  37. 37.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17:354–381Google Scholar
  38. 38.
    Taymor R. C., Pordy L., Chesky K., Moser M., Master A. M. (1952) The ballistocardiogram in coronary artery disease. J. Am. Med. Assoc. 9; 148(6):419–423Google Scholar
  39. 39.
    Tomasini E. P., Revel G. M., Castellini P. (2001) Laser Based Measurement, Encyclopaedia of Vibration Academic Press, London, 699–710Google Scholar
  40. 40.
    Tulppo M. P., Makikallio T. H., Takala T. E. S., Seppanen T., Huikuri H. V. (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271:H244–H252PubMedGoogle Scholar
  41. 41.
    Woo M. A., Stevenson W. G., Moser D. K., Trelease R. B., Harper R. H. (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J. 123:704–707CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • Umberto Morbiducci
    • 1
  • Lorenzo Scalise
    • 1
  • Mirko De Melis
    • 1
  • Mauro Grigioni
    • 2
  1. 1.Department of MechanicsUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Technology and Health DepartmentIstituto Superiore di SanitàRomeItaly

Personalised recommendations