Annals of Biomedical Engineering

, Volume 35, Issue 2, pp 137–169 | Cite as

A Comprehensive Survey of Brain Interface Technology Designs

  • S. G. Mason
  • A. Bashashati
  • M. Fatourechi
  • K. F. Navarro
  • G. E. Birch
Article

Abstract

In this work we present the first comprehensive survey of Brain Interface (BI) technology designs published prior to January 2006. Detailed results from this survey, which was based on the Brain Interface Design Framework proposed by Mason and Birch, are presented and discussed to address the following research questions: (1) which BI technologies are directly comparable, (2) what technology designs exist, (3) which application areas (users, activities and environments) have been targeted in these designs, (4) which design approaches have received little or no research and are possible opportunities for new technology, and (5) how well are designs reported. The results of this work demonstrate that meta-analysis of high-level BI design attributes is possible and informative. The survey also produced a valuable, historical cross-reference where BI technology designers can identify what types of technology have been proposed and by whom.

Keywords

Brain Interface Brain–Computer Interface Brain–Machine Interface Direct Brain Interface Adaptive Brain Interface BI BCI BMI DBI ABI Comparison Taxonomy Models Framework Design Meta-analysis 

Glossary

AT

acronym for assistive (or augmentative) technology

Attribute Sub-Class

sub-category of a design attribute. See Design Attribute. For examples, see Table 2

Assistive Device

the component of a Brain Interface (BI) that interacts directly with objects or people in the environment. For example, a speech synthesizer or an FES-based neuroprosthetic

BI

acronym for Brain Interface

BI AT

acronym for assistive (or augmentative) technology (AT) based on a Brain Interface (BI)

BI Transducer

a component of a Brain Interface that translates a person’s brain activity into usable control signals as shown in Fig. 1b–f. Functionally similar to other transducers like joysticks and switches

Bio-recording Technology

the class of equipment (sensors, amplifiers, converters and filters) used to measure a person’s brain activity in a BI Transducer

Continuous (fixed reference)

a signal classification; a signal of this class is a sequence of continuous amplitude values relative to a fixed reference value-like the adjustable level produced by an analog potentiometer. See other signal classes: Relative Continuous (no reference), Discrete (...) and Spatial Reference

Control Interface

a component that is added to a BI Transducer that produces a relatively low dimensional output in order to expand the control dimensionality to a level required by an Assistive Device as depicted in Fig. 1c and f. See Table  1 for examples.

Demonstration System

an experimental system (depicted in Fig.  1e and f) that demonstrates control of a BI Transducer but does not otherwise perform any useful function

Demo Device

a device used to test the controllability of a BI technology in a demonstration system (see Fig. 1e and f). For example, a model vehicle or table-mounted robotic arm

Design Attribute

an attribute of a Brain Interface technology design. See Table 1 for the list of design attributes

Discrete (with 1 NC state)

a signal classification; a signal of this class is a sequence of discrete states including one state that corresponds to the No Control state in the user. See No Control

Discrete (all IC states)

a signal classification; a signal of this class is a sequence of discrete states where all states corresponds to intentional control in the user. See Intentional Control

Discrete (with 1 unknown state)

a signal classification; a signal of this class is a sequence of discrete states where one state (the “unknown” state) is reserved for uncertain classifications

Endogenous Transducer

a BI Transducer design that responds to spontaneous control signals from the user

Exogenous Transducer

a BI Transducer design that responds to control signals evoked from the user using an external stimulator

Feature Extractor

a component of a BI Transducer that translates the input brain signal into a feature vector correlated to a neurological phenomenon. This component is sometimes referred to as noise reduction, filtering, preprocessing or spike detection/sorting

Feature Translator

a component of a BI Transducer that translates the feature vector into a useful control signal. This component is sometimes referred to as a Feature Classifier, Classifier or “decoding function” (or something similar)

Intentional Control

a user state when the user is attempting to affect the output of the Brain Interface

IC

acronym for Intentional Control

Neurological Phenomenon

the phenomenon (or phenomena) used to control a BI Transducer. For example, a P300 response in EEG to an oddball stimulus is a well-studied phenomenon employed in several BI Transducers. Another well-known phenomenon is the increase in neural firing rates measured in microelectrodes as neural activity increases

No Control

a user state when the user is not attempting to affect the output of the Brain Interface. For example, resting, monitoring, thinking, and daydreaming are all possible No Control states

NC

acronym for No Control

Relative Continuous (no reference)

a signal classification; a signal of this class is a sequence of changes to previous amplitude values-like the output of a mouse. See Continuous (fixed reference)

Spatial Reference

a signal classification; a signal of this class is a sequence of 2-D spatial positions (similar to signals output by an eye tracker, a touchscreen or stylus mechanism)

References

  1. 1.
    Allison B. Z., Pineda J. A. (2003) ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):110–113Google Scholar
  2. 2.
    Allison B. Z., Pineda J. A. (2005) Effects of SOA and flash pattern manipulations on ERP’s, performance, and preference: Implication for a BCI system. J Psychophysiol. 59(2):127–140Google Scholar
  3. 3.
    Anderson C. W., Devulapalli S. V., Stolz E. A. (1995) EEG Signal Classification with Different Signal Representations. IEEE Workshop on Neural Networks for Signal in Processing, Cambridge, MA, USA, pp. 475–483Google Scholar
  4. 4.
    Babiloni, F., L. Bianchi, F. Semeraro, J. Millan, R. del, J. Mourino, A. Cattini, S. Salinari, M. G. Marciani, and F. Cincotti. Mahalanobis distance-based classifiers are able to recognize EEG patterns by using few EEG electrodes. In Proc. Annual International Conference of IEEE EMBS, pp. 651–654, 2001Google Scholar
  5. 5.
    Babiloni F., Cincotti F., Bianchi L., Pirri G., Millan J.del R., Mourino J., Salinari S., Marciani M. G. (2001) Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers. Med. Eng. Phys. 23(5):323–328PubMedGoogle Scholar
  6. 6.
    Babiloni F., Cincotti F., Lazzarini L., Millan J., Mourino J., Varsta M., Heikkonen J., Bianchi L., Marciani M. G. (2000) Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans. Rehab. Eng. 8(2):186–188Google Scholar
  7. 7.
    Balbale U. H., J. E. Higgins, S. L. Bement, S. P. Levine. Multi-channel analysis of human event-related Cortical Potentials for the development of a Direct Brain Interface. In Proc. 1st Joint BMES/EMBS Conference, p. 447, 1999Google Scholar
  8. 8.
    Barreto A. B., A.M. Taberner, L. M. Vicente. Neural network classification of spatio-temporal EEG readiness potentials. In Proc. 15th Southern Biomedical Engineering Conference, pp. 73–76, 1996Google Scholar
  9. 9.
    Bashashati A., R. K. Ward and G. E. Birch. A new design of the Asynchronous Brain Computer Interface using the knowledge of the path of features. In Proc. 2nd IEEE Conference on Neural Engineering, Arlington, VA, USA, pp. 101–104, 2005Google Scholar
  10. 10.
    Bashashati A., R. K. Ward, G. E. Birch, M. R. Hashemi, and M. A. Khalilzadeh. Fractal dimension-based EEG Biofeedback system. In Proc. Annual International Conference of IEEE EMBS, Cancun, Mexico, pp. 2220–2223, 2003Google Scholar
  11. 11.
    Bayliss J. D. (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):113–116Google Scholar
  12. 12.
    Bayliss J. D. and D. H. Ballard. Single trial P300 recognition in a virtual environment. In Proc CIMA’99. Soft Computing in Biomedicine, Rochester, NY, 1999Google Scholar
  13. 13.
    Bayliss J. D., Ballard D. H. (2000) A virtual reality testbed for brain–computer interface research. IEEE Trans. Rehab. Eng. 8(2):188–190Google Scholar
  14. 14.
    Bayliss J.D., Inverso M.S., Tentler M.S. (2004) Changing the P300 brain computer interface. Cyber Psychol. Behav. 7(6):694–704Google Scholar
  15. 15.
    Birbaumer N., Kubler A., Ghanayim N., Hinterberger T., Perelmouter J., Kaiser J., Iversen I., Kotchoubey B., Neumann N., Flor H. (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehab. Eng. 8(2):190–193Google Scholar
  16. 16.
    Birch G.E., Bozorgzadeh Z., Mason S.G. (2002) Initial on-line evaluations of the LF-ASD Brain–Computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. IEEE Trans. Neural. Sys. Reh. Eng. 10(4):219–224Google Scholar
  17. 17.
    Birch G. E., Lawrence P. D., Hare R. D. (1993) Single trial in processing of event related potentials using outlier information. IEEE Trans. Biomed. Eng. 40(1):59–73PubMedGoogle Scholar
  18. 18.
    Blanchard G., Blankertz B. (2004) BCI Competition 2003 – Data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng. 51(6):1062–1066PubMedGoogle Scholar
  19. 19.
    Blankertz B., G. Curio, K. R. Müller. Classifying single trial EEG: Towards brain computer interfacing. In Proc. advances in NIPS, pp. 157–164, 2002Google Scholar
  20. 20.
    Blankertz B., Dornhege G., Schäfer C., Krepki R., Kolmorgen J., Müller K.R., Kunzmann V., Losch F., Curio G. (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):127–131Google Scholar
  21. 21.
    Boostani R., Moradi M. H. (2004) A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier. J. Neural. Eng. 4(1):212–217Google Scholar
  22. 22.
    Borisoff J. F., Mason S. G., Bashashati A., Birch G. E. (2004) Brain–Computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6):985–992PubMedGoogle Scholar
  23. 23.
    Bostanov V. (2006) BCI Competition 2003 – Data Set Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51(6):1057–1061Google Scholar
  24. 24.
    Bozorgzadeh, Z., G. E. Birch, and S. G. Mason. The LF-ASD BCI: On-line identification of imagined finger movements in spontaneous EEG with able-bodied subjects. In Proc ICASSP 2000, Istanbul, Turkey, pp. 109–113, 2000Google Scholar
  25. 25.
    Burke D., S. Kelly, P. de Chazal and R. Reilly. A simultaneous filtering and feature extraction strategy for direct brain interfacing. In Proc. Annual International Conference of IEEE EMBS, pp. 279–280, 2002Google Scholar
  26. 26.
    Burke D., Kelly S., Chazal P. de, Reilly R., Finucane C. (2005) A parametric feature extraction and classification strategy for brain–computer interfacing. IEEE Trans. Neural. Sys. Reh. Eng. 13(1):12–17Google Scholar
  27. 27.
    Calhoun G. L., and G. R. McMillan. EEG-based control for human–computer interaction. In Proc 3rd Symposium on Human Interaction with Complex Systems (HICS ’96), Dayton, Ohio, USA, pp. 4–9, 1996Google Scholar
  28. 28.
    Carmena J. M., Lebedev M. A., Crist R. E., O’Doherty J. E., Santucci D. M., Dimitrov D. F., Patil P. G., Henriquez C. S., Nicolelis M. A. L. (2003) Learning to control a brain–machine interface for reaching and grasping by primates. Plos Biol. 1(2):193–208Google Scholar
  29. 29.
    Carmena J. M., Lebedev M. A., Henriquez C. S., Nicolelis M. A. (2005) Stable ensemble performance with single-neuron variability during reaching movments in primates. J. Neurosci. 25(46):10712–10716PubMedGoogle Scholar
  30. 30.
    Chapin J. K., Moxon K. A., Markowitz R. S., Nicolelis M. A. (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7):664–670PubMedGoogle Scholar
  31. 31.
    Cheng M., and S. Gao. An EEG-based cursor control system. In Proc. IEEE BMES/EMBS Conference on Serving Humanity, Advancing Technology, Atlanta, USA, pp. 669, 1999Google Scholar
  32. 32.
    Cheng M., X. Gao, S. Gao, and W. Boliang. Stimulation frequency extraction in SSVEP-based brain–computer interface. In Proc. 1st International Conference on Neural Interface and Control, pp. 64–67, 2005Google Scholar
  33. 33.
    Cheng M., Gao X., Gao S., Xu D. (2002) Design and implementation of a brain–computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49(10):1181–1186PubMedGoogle Scholar
  34. 34.
    Cheng M., W. Jia, X. Gao, S. Gao and F. Yang. Mu-rhythm-based cursor control. Clin. Neurophys. 115(4):745–751, 2004Google Scholar
  35. 35.
    Cincotti F., Bianchi L., Millan J., Mourino J., Salinari S., Marciani M.G., Babiloni F. (2001) Brain computer interface: The use of low resolution surface laplacian and linear classifiers for the recognition of imagined hand movements. Med. Eng. Phys. 23(5):655–658Google Scholar
  36. 36.
    Cincotti F., Mattia D., Babiloni C., Carducci F., Salinari S., Bianchi L., Marciani M. G., Babiloni F. (2003) The use of EEG modifications due to motor imagery for brain–computer interfaces. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):131–133Google Scholar
  37. 37.
    Cincotti, F., A. Scipione, A. Timperi, D. Mattia, M. G. Marciani, J. Millan, S. Salinari, L. Bianchi and F. Babiloni. Comparison of different feature classifiers for brain computer interfaces. In Proc 1st IEEE Conference on Neural Engineering, pp. 645–647, 2003Google Scholar
  38. 38.
    Costa E. J., Cabral E. F. Jr. (2000) EEG-based discrimination between imagination of left and right hand movements using Adaptive Gaussian Representation. Med. Eng. Phys. 22(5):345–348PubMedGoogle Scholar
  39. 39.
    Coyle D., Prasad G., McGinnity T. M. (2005) A time–frequency approach to feature extraction for a brian-computer interface with a comparative analysis of performance measures. EURASIP J App Sig in Proc 19:3141–3151Google Scholar
  40. 40.
    Coyle S., Ward T., Markham C., McDarby G. (2004) On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Measure. 25(4):815–822Google Scholar
  41. 41.
    Curran E., Sykacek P., Stokes M., Roberts S. J., Penny W., Johnsrude I., Owen A. M. (2004) Cognitive tasks for driving a brain–computer interfacing system: A pilot study. IEEE Trans. Neural. Sys. Reh. Eng. 12(1):48–54Google Scholar
  42. 42.
    Darmanjian S., S. P. Kim, M. C. Nechbya, S. Morrison, J. Principe, J. Wessberg, M. A. Nicolelis. Bimodal brain–machine interface for motor control of robotic prosthetic. In Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, USA, pp. 3612–3617, 2003Google Scholar
  43. 43.
    Donchin E., Spencer K. M., Wijesinghe R. (2000) The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Trans. Rehab. Eng. 8(2):174–179Google Scholar
  44. 44.
    Dornhege, G., B. Blankertz and G. Curio. Speeding up classification of multi-channel brain–computer interfaces: Common spatial patterns for slow cortical potentials. In Proc 1st IEEE Conference on Neural Engineering, pp. 591–594, 2003Google Scholar
  45. 45.
    Dornhege G., Blankertz B., Curio G., Muller K. R. (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE. Trans. Biomed. Eng. 51(6):993–1002PubMedGoogle Scholar
  46. 46.
    Erfanian, A., A. Erfani. ICA-based classification scheme for EEG-based brain–computer interface: The role of mental practice and concentration skills. In Proc. Annual International Conference of IEEE EMBS, pp. 235–238, 2004Google Scholar
  47. 47.
    Fabiani G. E., McFarland D., Wolpaw J. R., Pfurtscheller G. (2004) Conversion of EEG activity into cursor movement by a Brain–Computer Interface (BCI). IEEE Trans. Neural. Syst. Rehabil. Eng. 12(3):331–338PubMedGoogle Scholar
  48. 48.
    Farwell L. A., Donchin E. (1988) Talking off the top of your head: towards a mental prosthesis utilizing event-related brain potentials. Elect. Clin. Neurophysiol. 80:510–523Google Scholar
  49. 49.
    Fatourechi, M., A. Bashashati, J. F. Borisoff, G. E. Birch, R. K. Ward. Improving the performance of the LF-ASD brain computer interface by means of genetic algorithm. In Proc. IEEE Symposium on Signal in Processing and Information Technology, Rome, Italy, 2004Google Scholar
  50. 50.
    Flotzinger, D., M. Pregenzer, G. Pfurtscheller. Feature selection with distinction sensitive learning vector quantisation and genetic algorithms. In Proc. IEEE International Conference on Neural Networks, ICNN ’94, pp. 3448–3451, 1994Google Scholar
  51. 51.
    Foley J. D., van Dam A., Feiner S. K., Hughes J. F. (1990) Computer Graphics Principles and Practice, 2nd ed. Addison-Wesley Publishing Inc., New YorkGoogle Scholar
  52. 52.
    Fukada, S., D. Tatsumi, H. Tsujimoto and S. Inokuchi. Studies of input speed of word inputting system using event-related potential. In Proc. Annual International Conference of IEEE EMBS, pp. 1458–1460, 1998Google Scholar
  53. 53.
    Gao, X., X. Neng, H. Bo, G. Shangkai, Y. Fusheng. Optimal selection of independent components for event-related brain electrical potential enhancement. In IEEE International Workshop on Biomedical Circuits and Systems, pp. S3–5/INV-1–4, 2004Google Scholar
  54. 54.
    Gao X., Xu D., Cheng M., Gao S. (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):137–140Google Scholar
  55. 55.
    Gao Y., Black M. J., Bienenstock E., Shoham S., Donoghue J. P. (2002) Probabilistic inference of hand motion from neural activity in motor cortex. Adv. NIPS 14:1–8Google Scholar
  56. 56.
    Gao,Y., M. J. Black, E. Bienenstock, W. Wu, and J. P. Donoghue. A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions. In Proc. 1st IEEE Conference on Neural Engineering, pp. 189–192, 2003Google Scholar
  57. 57.
    Garcia, G., T. Ebrahimi. Time–frequency-space kernel for single EEG-trial classification. In Proc. 5th Nordic Signal in Processing Symposium (NORSIG 2002), 2002Google Scholar
  58. 58.
    Garcia G., T. Ebrahimi and J. M. Vesin. Classification of EEG signals in the ambiguity domain for brain computer interface applications. In Proc. 14th International Conference on Digital Signal in Processing, pp. 301–305, 2002Google Scholar
  59. 59.
    Garcia, G., T. Ebrahimi and J. M. Vesin. Correlative exploration of EEG signals for direct brain–computer communications. In Proc. ICASSP 2003, pp. 816–819, 2003Google Scholar
  60. 60.
    Garcia, G., T. Ebrahimi and J. M. Vesin. Support vector EEG classification in the Fourier and time–frequency correlation domains. In Proc. 5th Nordic Signal in Processing Symposium (NORSIG 2002), pp. 591–594, 2003Google Scholar
  61. 61.
    Garrett D., Peterson D. A., Anderson C. W., Thaut M. H. (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):141–144Google Scholar
  62. 62.
    Glassman E. L. (2005) A wavelet-like filter based on neuron action potentials for analysis of Human Scalp Electroencephalographs. IEEE Trans. Biomed. Eng. 52(11):1851–1862PubMedGoogle Scholar
  63. 63.
    Graimann, B., J. E. Huggins, S. P. Levine, G. Pfurtscheller. Detection of ERP and ERD/ERS patterns in single ECoG channels. In Proc. 1st IEEE Conference on Neural Engineering, Capri Island, Italy, pp. 614–617, 2003Google Scholar
  64. 64.
    Graimann B., Huggins J.E., Levine S.P., Pfurtscheller G. (2004) Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis. IEEE Trans. Biomed. Eng. 51(6):954–962PubMedGoogle Scholar
  65. 65.
    Graimann B., Huggins J. E., Schlogl A., Levine S. P. Pfurtscheller G. (2003) Detection of movement-related desynchronization patterns in ongoing single-channel electrocorticogram. IEEE Trans. Neural. Sys. Reh. Eng. 11(3):276–281Google Scholar
  66. 66.
    Guan, C., Y. Chen, J. Lin, Y. Yuan, and M. Huang. N2 components as features for brain computer interface. In Proc. 1st International Conference on Neural Interface and Control, pp. 45–49, 2005Google Scholar
  67. 67.
    Guan, C., M. Thulasidas, J. Wu. High performance P300 speller for brain–computer interface. In IEEE International Workshop on Biomedical Circuits and Systems, pp. S3–5/INV-13–16, 2004Google Scholar
  68. 68.
    Guger C., G. Müller, C. Neuper, G. Krausz, I. Niedermayer, G. Pfurtscheller. Brain–computer communication system: The EEG-based control of a hand orthesis in a quadriplegic patient. In Proc. 7th Int. Conf. on Computers Helping People with Special Needs, ICCHP 2000, 2000Google Scholar
  69. 69.
    Guger C., Ramoser H., Pfurtscheller G. (2000) Real-Time EEG Analysis with Subject-Specific Spatial Patterns for a brain–computer interface (BCI). IEEE Trans. Rehab. Eng. 8(4):447–456Google Scholar
  70. 70.
    Gysels E., Celka P. (2004) Phase synchronization for the recognition of mental tasks in a brain–computer interface. IEEE Trans. Neural. Syst. Rehabil. Eng. 12(4):406–415PubMedGoogle Scholar
  71. 71.
    Haselsteiner E., Pfurtscheller G. (2000) Using time-dependent neural networks for EEG classification. IEEE Trans. Rehab. Eng. 8(4):457–463Google Scholar
  72. 72.
    Hatsopoulos N., Joshi J., O’Leary J.G. (2004) Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92(2):1165–1174PubMedGoogle Scholar
  73. 73.
    Hill, J. N., T. N. Lal, K. Bierig, N. Birbaumer, B. Scholkopf. Attentional modulation of auditory event-related potentials in a brain–computer interface. In IEEE International Workshop on Biomedical Circuits and Systems, pp. 17–19 2004Google Scholar
  74. 74.
    Hinterberger T., Kubler A., Kaiser J., Neumann N., Birbaumer N. (2003) A brain–computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Elect. Clin. Neurophysiol. 114(3):416–425Google Scholar
  75. 75.
    Hinterberger T., Neumann N., Pham M., Kubler A., Grether A., Hofmayer N., Wilhelm B., Flor H., Birbaumer N. (2004) A multimodal brain-based feedback and communication system. Exp. Brain Res. 154(4):521–526PubMedGoogle Scholar
  76. 76.
    Hu, J, J. Si, B. Olson and J. P. He. Principle component feature detector for motor cortical control. In Proc. Annual International Conference of IEEE EMBS, pp. 4021–4024, 2004Google Scholar
  77. 77.
    Huan N.J., Palaniappan R. (2004) Neural network classification of autoregressive features from electroencephalogram signals for brain–computer interface design. J. Neural. Eng. 1:142–150PubMedGoogle Scholar
  78. 78.
    Huan, N. J. and R. Palaniappan. Classification of Mental Tasks using fixed and adaptive autoregressive models of EEG signals. In Proc. Annual International Conference of IEEE EMBS, pp. 507–510, 2004Google Scholar
  79. 79.
    Huggins J. E., Levine S. P., Bement S. L., Kushwaha R. K., Schuh L. A., Passaro E. A., Rohde M. M., Ross D. A., Elisevich K. V., Smith B. J. (1999) Detection of event-related potentials for development of a direct brain interface. J. Clin. Neurophysiol. 16(5):448–455PubMedGoogle Scholar
  80. 80.
    Huggins, J. E., S. P. Levine, J. A. Fessler, W. M. Sowers, G. Pfurtscheller, B. Graimann, A. Schloegl, D. N. Minecan, R. K. Kushwaha, S. L. Bement, O. Sagher, L. A. Schuh. Electrocorticogram as the basis for a direct brain interface: Opportunities for improved detection accuracy. In Proc. 1st IEEE Conference on Neural Engineering, pp. 587–590, 2003Google Scholar
  81. 81.
    Hung C. I., Lee P. L., Wu Y. T., Chen L. F., Yeh T. C., Hsieh J. C. (2005) Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers. Ann. Biomed. Eng. 33(8):1053–1070PubMedGoogle Scholar
  82. 82.
    Isaacs R. E., Weber D. J., Schwartz A. B. (2000) Work toward real-time control of a cortical neural prothesis. IEEE Trans. Rehab. Eng. 8(2):196–198Google Scholar
  83. 83.
    Ivanova, I., G. Pfurtscheller, C. Andrew. AI-based classification of single-trial EEG data. In Proc. Annual International Conference of IEEE EMBS, pp. 703–704, 1995Google Scholar
  84. 84.
    Jansen B. H., Allam A., Kota P., Lachance K., Osho A., Sundaresan K. (2004) An exploratory study of factors affecting single trial P300 detection. IEEE Trans. Biomed. Eng. 51(6):975–978PubMedGoogle Scholar
  85. 85.
    Jia, W., X. Zhao, H. Liu, X. Gao, S. Gao and F. Yang. Classification of single trial EEG during motor imagery based on ERD. In Proc. Annual International Conference of IEEE EMBS, pp. 5–8, 2004Google Scholar
  86. 86.
    Kaiser J., Kubler A., Hinterberger T., Neumann N., Birbaumer N. (2002) A non-invasive communication device for the paralyzed. Minimal Invasive Neurosurg. 45(1):19–23Google Scholar
  87. 87.
    Kaiser J., Perelmouter J., Iversen I. H., Neumann N., Ghanayim N., Hinterberger T., Kubler A., Kotchoubey B., Birbaumer N. (2001) Self-initiation of EEG-based communication in paralyzed patients. Elect. Clin. Neurophysiol. 112(3):551–554Google Scholar
  88. 88.
    Kalcher, J., D. Flotzinger, G. Pfurtscheller. A new approach to a brain–computer-interface (BCI) based on Learning Vector Quantization (LVQ3). In Proc. Annual International Conference of IEEE EMBS, pp. 1658–1659, 1992Google Scholar
  89. 89.
    Kalcher, J., D. Flotzinger, G. Pfurtscheller. Graz brain–computer interface: An EEG-based cursor control system. In Proc. Annual International Conference of IEEE EMBS, pp. 1264–1265, 1993Google Scholar
  90. 90.
    Kaper M., Meinicke P., Grossekathoefer U., Lingner T., Ritter H. (2004) BCI competition 2003-Data set IIb: Support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51(6):1073–1076PubMedGoogle Scholar
  91. 91.
    Kawakami, T., M. Inoue, Y. Kobayashi, K. Nakashima. Application of event related potentials to communication aids. In Proc. Annual International Conference of IEEE EMBS, pp. 2229–2231, 1996Google Scholar
  92. 92.
    Keirn Z. A., Aunon J. I. (1990) A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12):1209–1214PubMedGoogle Scholar
  93. 93.
    Kelly S., D. Burke, P. de Chazal and R. Reilly. Parametric models and spectral analysis for classification in brain–computer interfaces. In Proc. 14th International Conference on Digital Signal in Processing, pp. 307–310, 2002Google Scholar
  94. 94.
    Kelly S. P., Lalor E.C., Finucane C., McDarby G., Reilly R. B. (2005) Visual spatial attention control in an independant brain–computer interface. IEEE Trans. Biomed. Eng. 52(9):1588–1596PubMedGoogle Scholar
  95. 95.
    Kelly, S. P., E. C. Lalor, C. Finucane and R. Reilly. A comparison of covert and overt attention as a control option in a steady-state visual evoked potential-based brain computer interface. In Proc. Annual International Conference of IEEE EMBS, pp. 2–4, 2004Google Scholar
  96. 96.
    Kelly, S. P., E. C. Lalor, J. J. Foxe. Independent brain computer interface control using visual spatial attention-dependent modulations of Parieto-occipital alpha. In Proc. 2nd IEEE Conference on Neural Engineering, pp. 5–8, 2005Google Scholar
  97. 97.
    Kemere C., Shenoy K. V., Meng T. H. (2004) Model-based neural decoding of reaching movements: A maximum likelihood approach. IEEE Trans. Biomed. Eng. 51(6):925–932PubMedGoogle Scholar
  98. 98.
    Kennedy P. R., Bakay R. A., Moore M. M., Adams K., Goldwaithe J. (2000) Direct control of a computer from the human central nervous system. IEEE Trans. Rehab. Eng. 8(2):198–202Google Scholar
  99. 99.
    Kim H. K., Kim S. S., Kim S. J. (2005) Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study. J. Neurosci. Methods 150(2):202–211PubMedGoogle Scholar
  100. 100.
    Kim S. P., Rao Y. N., Erdogmus D., Sanchez J. C., Nicolelis M. A., Principe J. (2005) Determining patterns in neural activity for reaching movements using nonnegative matrix factorization. EURASIP J. App. Sig. Proc. 19:3113–3121Google Scholar
  101. 101.
    Kohlmorgen, J. and B. Blankertz. A simple generative model for single-trial EEG classification. In Proc. International Conference on Artificial Neural Networks, pp. 1156–1161, 2003Google Scholar
  102. 102.
    Kostov, A. and M. Polak. Prospects of computer access using voluntary modulated EEG signal. In Proc. 1st Annual ECPD Symposium on Brain & Consciousness, pp. 233–236, 1997Google Scholar
  103. 103.
    Kostov A., Polak M. (2000) Parallel man–machine training in development of EEG-based cursor control. IEEE Trans. Rehab. Eng. 8(2):203–205Google Scholar
  104. 104.
    Krauledat, M., G. Dornhege, B. Blankertz, F. Losch, G. Curio and K. R. Mueller. Improving speed and accuracy of Brain–Computer interfaces using readiness potential features. In Proc. Annual International Conference of IEEE EMBS, pp. 4511–4515, 2004Google Scholar
  105. 105.
    Krausz G., Scherer R., Korisek G., Pfurtscheller G. (2003) Critical decision-speed and information transfer in the “Graz Brain–Computer Interface”. Appl. Psychophysiol. Biofeedback 28(3):233–240PubMedGoogle Scholar
  106. 106.
    Kubler A., Kotchoubey B., Hinterberger T., Ghanayim N., Perelmouter J., Schauer M., Fritsch C., Taub E., Birbaumer N. (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp. Brain Res. 124(2):223–232PubMedGoogle Scholar
  107. 107.
    Kubler A., Kotchoubey B., Kaiser J., Wolpaw J. R., Birbaumer N. (2001) Brain–computer communication: Unlocking the locked in. Psych. Bull. 127(3):358–375Google Scholar
  108. 108.
    Kubler A., Mushahwar A., Hochberg L.R., Donoghue J. P. (2006) BCI Meeting 2005 – Workshop on clinical issues and applications. IEEE Trans. Neural. Sys. Reh. Eng. 14(2):131–134Google Scholar
  109. 109.
    Kubler A., Nijboer F., Mellinger J., vaugh B.A., Pawelzik H., Schalk G., McFarland D.J., Birbaumer N., Wolpaw J.R. (2005) Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology, 64(10):1775–1777Google Scholar
  110. 110.
    LaCourse, J. R., E. Wilson. Brainiac: A brain computer link. In Proc. IEEE Instrumentation & Measurement Technology Conference, pp. 587–592, 1995Google Scholar
  111. 111.
    Lal T. N., Schroder M., Hinterberger T., Weston J., Bogdan M., Birbaumer N., Scholkopf B. (2004) Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6):1003–1010PubMedGoogle Scholar
  112. 112.
    Lalor E. C., Kelly S. P., Finucane C., Burke R., Reilly R. B., McDarby G. (2005) Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment. EURASIP J. App. Sig. Proc. 19:3156–3164Google Scholar
  113. 113.
    Lee P. L., Wu C. H., Hsieh J. C., Wu Y. T. (2005) Visual evoked potential actuated brain computer interface: A brain-actuated cursor system. Electr. Letts 41(15):832–834Google Scholar
  114. 114.
    Leeb, R. and G. Pfurtscheller. Walking through a virtual city by thought. In Proc. Annual International Conference of IEEE EMBS, pp. 4503–4506, 2004Google Scholar
  115. 115.
    Lemm S., Blankertz B., Curio G., Muller K. R. (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9):1541–1548PubMedGoogle Scholar
  116. 116.
    Lemm S., Schafer C., Curio G. (2004) BCI competition 2003 – Data set III: Probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans. Biomed. Eng. 51(6):1077–1080PubMedGoogle Scholar
  117. 117.
    Leuthardt E. C., Schalk G., Wolpaw J. R., Ojemann J. G., Moran D. W. (2004) A brain–computer interface using electrocorticographic signal in humans. J. Neural. Eng. 1:63–71PubMedGoogle Scholar
  118. 118.
    Levine S. P., Huggins J. E., Bement S. L., Kushwaha R. K., Schuh L. A., Passaro E. A., Rohde M. M., Ross D. A. (1999) Identification of electrocorticogram patterns as the basis for a direct brain interface. J Clin. Neurophysiol. 16(5):439–447PubMedGoogle Scholar
  119. 119.
    Li, Y., A. Cichocki, C. Guan and J. Qin. Sparse factorization proprecessing-based offline analysis for a cursor control experiment. In IEEE International Workshop on Biomedical Circuits and Systems, pp. S3–5/INV-5–8, 2004Google Scholar
  120. 120.
    Li Y., Gao X., Liu H., Gao S. (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans. Biomed. Eng. 51(6):1019–1025PubMedGoogle Scholar
  121. 121.
    Lisogurski D., Birch G. E. (1998) Identification of finger flexions from continuous EEG as a brain computer interface. Eng. Med. Biol. 20(4):2004–2007Google Scholar
  122. 122.
    Mahmoudi, B. and A. Erfanian. Single-channel EEG-based prosthetic hand grasp control for amputee subjects, In Proc. Annual International Conference of IEEE EMBS, pp. 2406–2407, 2002Google Scholar
  123. 123.
    Mason, S. G., A. Bashashati, M. Fatourechi and G. E. Birch. Conceptual models for brain-interface technology design. http://www.braininterface.org/published links/BI Design Framework.htm, 2005Google Scholar
  124. 124.
    Mason S. G., Birch G. E. (2000) A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10):1297–1307PubMedGoogle Scholar
  125. 125.
    Mason S.G., Birch G.E. (2003) A general framework for Brain–Computer interface design. IEEE Trans. Neural. Sys. Reh. Eng. 11(1):70–85Google Scholar
  126. 126.
    Mason, S.G. and G.E. Birch. Temporal control paradigms for direct brain interfaces – rethinking the definition of asynchronous and synchronous. In Proc. HCI International, Las Vegas, USA, 2005Google Scholar
  127. 127.
    Mason S. G., Bohringer R., Borisoff J. F., Birch G. E. (2004) Real-time control of a video game with a direct brain–computer interface. J. Clin. Neurophys. 21(6):404–408Google Scholar
  128. 128.
    Mason, S. G., J. Kronegg, J. E. Huggins, M. Fatourechi and A. Schloegl. Evaluating the performance of self-paced Brain Computer Interface Technology. http://www.bci-info.org//Research_Info/documents/articles/self_paced_tech_report-2006–05–19.pdf, 2006Google Scholar
  129. 129.
    Mason, S. G., M. M. Moore and G. E. Birch. Designing pointing devices using Brain–Computer Interface Technology. In Proc. 1st Intl. IEEE EMBS Conference on Neural Engineering, Capri, Italy, pp. 610–613, 2003Google Scholar
  130. 130.
    McFarland D., Neat G. W., Read R., Wolpaw J. R. (1993) An EEG-based method for graded cursor control. Pyschobiology 21:77–81Google Scholar
  131. 131.
    McFarland D., Wolpaw J. R. (1999) EEG-based communication and control: Short-term role of feedback. IEEE Trans. Rehab. Eng. 6(1):7–11Google Scholar
  132. 132.
    McFarland D. J., Sarnacki W. A., Wolpaw J. R. (2003) Brain–computer interface (BCI) operation: Optimizing information transfer rates. Biol. Psychol. 63(3):237–251PubMedGoogle Scholar
  133. 133.
    McMillan, G. R. and G. L. Calhoun. Direct brain interface utilizing self-regulation of steady-state visual evoked response (SSVER). In Proc RESNA ‘95 Annual Conference, pp. 693–695, 1995Google Scholar
  134. 134.
    Mensh B. D., Werfel J., Seung H.S. (2004) BCI Competition 2003 – Data set Ia: Combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng. 51(6):1052–1056PubMedGoogle Scholar
  135. 135.
    Middendorf M., McMillan G., Calhoun G., Jones K.S. (2004) Brain–computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehab. Eng. 8(2):211–214Google Scholar
  136. 136.
    Millan J., Mourino J., Franze M., Cincotti F., Varsta M., Heikkonen J., Babiloni F. (2002) A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans. Neural Networks 13(3):678–686Google Scholar
  137. 137.
    Millan, J. del R., J. Mourino, F. Cincotti, M. Varsta, J. Heikkonen, F. Topani, M. G. Marciani, K. Kaski, F. Babiloni. Neural Networks for robust classification of mental tasks. In Proc. Annual International Conference of IEEE EMBS, pp. 1380–1382, 2000Google Scholar
  138. 138.
    Millan J. del R., J. Mourino, M. G. Marciani, F. Babiloni, F. Topani, I. Canale, J. Heikkonen and K. Kaski. Adaptive brain interfaces for physically-disabled people. In Proc. Annual International Conference of IEEE EMBS, pp. 2008–2011, 1998Google Scholar
  139. 139.
    Millán, J. del R., F. Renkens, J. Mouriño and W. Gerstner. Non-invasive brain-actuated control of a Mobile Robot. In Proc. 18th Joint International Conference on Artificial Intelligence, Acapulco, Mexico, 2003Google Scholar
  140. 140.
    J. Mouriño, S. Chiappa, R. Jané and Millán, J. del R. Evolution of the mental states operating a brain–computer interface. In Proc. International Federation Conference for Medical and Biological Engineering, pp. 600–601, 2002Google Scholar
  141. 141.
    Müller, K. R., G. Curio, B. Blankertz and G. Dornhege. Combining features for BCI. In Proc. Advances in NIPS (NIPS 02), 2002Google Scholar
  142. 142.
    Muller-Putz G. R., Scherer R., Brauneis C., Pfurtscheller G. (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural. Eng. 2(4):123–130PubMedGoogle Scholar
  143. 143.
    Muller-Putz G. R., Scherer R., Pfurtscheller G., Rupp R. (2005) EEG-based neuroprosthesis control: A step towards clinical practice. Neurosci. Letts 382(1–2):169–174Google Scholar
  144. 144.
    Musallam S., Cornell B. D., Greger B., Scherberger H., Andersen R. A. (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262PubMedGoogle Scholar
  145. 145.
    Neuper C., Scherer R., Reiner M., Pfurtscheller G. (2005) Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3):668–677PubMedGoogle Scholar
  146. 146.
    Neuper C., Schlögl A., Pfurtscheller G. (1999) Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. J. Clin. Neurophys. 16(4):373–382Google Scholar
  147. 147.
    Nielsen, J., Usability Engineering. Orlando, Florida: AP Professional, 2003Google Scholar
  148. 148.
    Obermaier B., Guger C., Neuper C., Pfurtscheller G. (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recog. Letts 22:1299–1309Google Scholar
  149. 149.
    Obermaier B., Muller G. R., Pfurtscheller G. (2003) “Virtual keyboard” controlled by spontaneous EEG activity. IEEE Trans. Neural Sys. Reh. Eng. 11(4):422–426Google Scholar
  150. 150.
    Obermaier B., Munteanu C., Rosa A., Pfurtscheller G. (2001) Asymmetric hemisphere modeling in an offline brain–computer interface. IEEE Trans. Systems, Man Cybernet. Part C 31(4):536–540Google Scholar
  151. 151.
    Obermaier B., Neuper C., Guger C., Pfurtscheller G. (2001) Information Transfer Rate in a Five-Classes Brain–Computer Interface. IEEE Trans. Neural. Sys. Reh. Eng. 9(3):283–288Google Scholar
  152. 152.
    Olson B., Si J., Hu J., He J.P. (2005) Closed-loop cortical control of direction using support vector machines. IEEE Trans. Neural. Syst. Rehabil. Eng. 13(1):72–80PubMedGoogle Scholar
  153. 153.
    Otto K. J., Vetter R. J., Marzullo T. C., Kipke D. R. Brain–machine interfaces in rat motor cortex: Implications of adaptive decoding algorithms. In Proc 1st IEEE Conference on Neural Engineering, Capri Island, Italy, pp. 100–103, 2003Google Scholar
  154. 154.
    Palaniappan, R. Brain computer interface design using band powers extracted during mental tasks. In Proc. 2nd IEEE Conference on Neural Engineering, pp. 5–8, 2005Google Scholar
  155. 155.
    Palaniappan R., Paramesran R., Nishida S., Saiwaki N. (2002) A new brain–computer interface design using Fuzzy ARTMAP. IEEE Trans. Neural. Sys. Reh. Eng. 10(3):140–148Google Scholar
  156. 156.
    Patil P. G., Carmena J. A., Nicolelis M. A., Turner D. A. (2004) Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain–machine interface. Neurosurgery 55(1):27–35PubMedGoogle Scholar
  157. 157.
    Penny W. D., Roberts S. J., Curran E. A., Stokes M. J. (2000) EEG-based communication: A pattern recognition approach. IEEE Trans. Rehab. Eng. 8(2):214–215Google Scholar
  158. 158.
    Perelmouter J., Birbaumer N. (2000) A binary spelling interface with random errors. IEEE Trans. Rehab. Eng. 8(2):227–232Google Scholar
  159. 159.
    Peters B. O., Pfurtscheller G., Flyvbjerg H. (2001) Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 48(1):111–116PubMedGoogle Scholar
  160. 160.
    Peterson D. A., Knight J. N., Kirby M. J., Anderson C. W., Thaut M. H. (2005) Feature selection and blind source seperation in an EEG-based brain–computer interface. EURASIP J. App. Sig. Proc. 19:3128–3140Google Scholar
  161. 161.
    Pfurtscheller G., Muller-Putz G. R., Pfurtscheller J., Rupp R. (2005) EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP J. App. Sig. Proc. 19:3152–3155Google Scholar
  162. 162.
    Pfurtscheller G., Guger C. (1999) Brain–computer communication system: EEG-based control of hand orthesis in a tetraplegic patient. Acta Chir. Austriaca 31:23–25Google Scholar
  163. 163.
    Pfurtscheller G., Kalcher J., Neuper C., Flotzinger D., Pregenzer M. (1996) On-line EEG classification during externally-paced hand movements using a neural network-based classifier. Elect. Clin. Neurophysiol. 99(5):416–425Google Scholar
  164. 164.
    Pfurtscheller G., Muller G. R., Pfurtscheller J., Gerner H. J., Rupp R. (2003) ‘Thought’ – control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Letts 351(1):33–36Google Scholar
  165. 165.
    Pfurtscheller G., Neuper C., Schlogl A., Lugger K. (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehab. Eng. 6(3):316–325Google Scholar
  166. 166.
    Pineda J. A., Allison B. Z., Vankov A. (2002) The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): Toward a brain–computer interface (BCI). IEEE Trans. Rehab. Eng. 8(2):219–222Google Scholar
  167. 167.
    Polak, M. and A. Kostov. Feature extraction in development of brain–computer interface: A case study. In Proc. Annual International Conference of IEEE EMBS, pp. 2058–2061, 1998Google Scholar
  168. 168.
    Polikoff, J. B., H.T. Bunnell and W. Borkowski. Toward a P300-based Computer Interface. In Proc RESNA ‘95, pp. 178–180, 1995Google Scholar
  169. 169.
    Pregenzer, M., G. Pfurtscheller. Distinction sensitive learning vector quantization (DSLVQ)-application as a classifier based feature selection method for a brain computer interface. In Proc. 4th International Conference on Artificial Neural Networks, pp. 433–436, 1995Google Scholar
  170. 170.
    Pregenzer M., Pfurtscheller G. (1999) Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehab. Eng. 7(4):413–419Google Scholar
  171. 171.
    Qin L., Ding L., He B. (2004) Motor imagery classification by means of source analysis for brain–computer interface applications. J. Neural. Eng. 1(3):135–141PubMedGoogle Scholar
  172. 172.
    Qin L., He B. (2005) A wavelet-based time–frequency analysis approach for classification of motor imagery for brain–computer interface applications. J. Neural. Eng. 2:65–72PubMedGoogle Scholar
  173. 173.
    Ramoser H., Muller-Gerking J., Pfurtscheller G. (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehab. Eng. 8(4):441–446Google Scholar
  174. 174.
    Rao, Y. N., S. P. Kim, J. C. Sanchez, D. Erdogmus, J. Principe, J. M. Carmena, M. A. Lebedev, M. A. Nicolelis. Learning mappings in brain machine interfaces with echo state networks. In Proc. ICASSP 2004, pp. 233–236, 2005Google Scholar
  175. 175.
    Roberts S.J., Penny W. (2000) Real-time brain–computer interfacing: A preliminary study using Bayesian learning. Med. Biol. Eng. Comput. 38(1):56–61PubMedGoogle Scholar
  176. 176.
    Rohde M. M., Bement S. L., Huggins J. E., Levine S. P., Kushwaha R. K., Schuh L. A. (2002) Quality estimation of subdurally recorded, event-related potentials based on signal-to-noise ratio. IEEE Trans. Biomed. Eng. 49(1):31–40PubMedGoogle Scholar
  177. 177.
    Ryu, C., Y. Song, D. S. Yoo, S. Choi, S. S. Moon and J. H. Sohn, EEG-based discrimination between yes and no. In Proc 1st Joint BMES/EMBS Conference, pp. 444, 1999Google Scholar
  178. 178.
    Santos, T. O., R. Caetano, J. Moniz and A. C. Rosa. Classification of movement cognitive potentials from EEG. In Proc. first joint BMES/EMBS Conference, pp. 449, 1999Google Scholar
  179. 179.
    Scherer R., Muller G. R., Neuper C., Graimann B., Pfurtscheller G. (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6):979–984PubMedGoogle Scholar
  180. 180.
    Schloegl, A., C. Neuper, G. Pfurtscheller. Subject specific EEG patterns during motor imaginary. In Proc. Annual International Conference of IEEE EMBS, pp. 1530–1532, 1997Google Scholar
  181. 181.
    Schlogl A., Lee F., Bischof H., Pfurtscheller G. (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural. Eng. 2(4):L14–L22PubMedGoogle Scholar
  182. 182.
    Schlögl, A., G. Pfurtscheller, B. Schack. Single-trial EEG analysis using an adaptive autoregressive model. In 4th International Symposium on Central Nervous Monitoring, 1996Google Scholar
  183. 183.
    Schroder M., M. Bogdan, W. Rosenstiel, T. Hinterberger, N. Birbaumer. Automated EEG Feature Selection for Brain Computer Interfaces, in Proc 1st IEEE Conference on Neural Engineering, pp. 626–629, 2003Google Scholar
  184. 184.
    Schroder M., Lal T. N., Hinterberger T., Bodgan M., Hill J. N., Birbaumer N., Rosenstiel W., Scholkopf B. (2005) Robust EEG channel selection across subjects for brain–computer interface. EURASIP J. App. Sig. Proc. 19:3103–3112Google Scholar
  185. 185.
    Serby H., Yom-Tov E., Inbar G.F. (2005) An improved P300-based brain–computer interface. IEEE Trans. Neural. Syst. Rehabil. Eng. 13(1):89–98PubMedGoogle Scholar
  186. 186.
    Serruya M., Hatsopoulos N., Fellows M., Paninski L., Donoghue J. (2003) Robustness of neuroprosthetic decoding algorithms. Biol. Cybernet. 88(3):219–228Google Scholar
  187. 187.
    Serruya M. D., Hatsopoulos N. G., Paninski L., Fellows M. R., Donoghue J. P. (2002) Instant neural control of a movement signal. Nature 416(6877):141–142PubMedGoogle Scholar
  188. 188.
    Sheikh H., McFarland D. J., Sarnacki W. A., Wolpaw J. R. (2003) Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans. Neurosci. Letts 345(2):89–92Google Scholar
  189. 189.
    Shneiderman B. (1998) Designing the user interface-strategies for effective human–computer interaction, 3rd ed. Addison-Wesley Longman Inc., New YorkGoogle Scholar
  190. 190.
    Sutter E. E. (1992) The brain response interface: communication through visually-induced electrical brain responses. J. Micro. Comp. App. 15:31–45Google Scholar
  191. 191.
    Sykacek P., Roberts S., Stokes M., Curran E., Gibbs M., Pickup L. (2003) Probabilistic methods in BCI research. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):192–195Google Scholar
  192. 192.
    Sykacek P., Roberts S.J., Stokes M. (2004) Adaptive BCI based on variational Bayesian Kalman filtering: An empirical evaluation. IEEE Trans. Biomed. Eng. 51(5):719–727PubMedGoogle Scholar
  193. 193.
    Taylor D. M., Tillery S. I., Schwartz A. B. (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832PubMedGoogle Scholar
  194. 194.
    Taylor D. M., Tillery S. I. H., Schwartz A. B. (2003) Information conveyed through brain-control: Cursor versus robot. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):195–199Google Scholar
  195. 195.
    Thulasidas, M., C. Guan, S. Ranganatha, J. K. Wu, X. Zhu and W. Xu. Effect of ocular artifact removal in brain computer interface accuracy. In Proc Annual International Conference of IEEE EMBS, pp. 4385–4388, 2004Google Scholar
  196. 196.
    Townsend G., Graimann B., Pfurtscheller G. (2004) Continuous EEG classification during motor imagery – Simulation of an asynchronous BCI. IEEE Trans. Neural. Sys. Reh. Eng. 12(2):258–265Google Scholar
  197. 197.
    Trejo L. J., Wheeler K. R., Jorgensen C. C., Rosipal R., Clanton S. T., Matthews B., Hibbs A. D., Matthews R., Krupka M. (2003) Multimodal neuroelectric interface development. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):199–204Google Scholar
  198. 198.
    Varsta, M., J. Heikkonen, J. del R. Millan and J. Mourino. Evaluating the performance of three feature sets for brain–computer interfaces with an early stopping MLP commitee. In Proceeding of 15th International Conference on Pattern Recognition (ICPR’00), pp. 907–910, 2000Google Scholar
  199. 199.
    Vaughan T., Heetderks W. J., Trejo L. J., Rymer W. Z., Wienrich M., Moore M. M., Kubler A., Dobkin B. H., Birbaumer N., Donchin E., Wolpaw E. W., Wolpaw J. R. (2003) Brain–computer interface technology: a review of the second international meeting. IEEE Trans. Neural. Sys. Reh. Eng. 11(2):94–109Google Scholar
  200. 200.
    Vaughan T.M., Wolpaw J.R., Donchin E. (1996) EEG-based communication: Prospects and problems. IEEE Trans. Rehab. Eng. 4(4):425–430Google Scholar
  201. 201.
    Vidal, J. J. Real-time detection of brain events in EEG. In Proc IEEE, Special Issue on Biol. Signal. Process. Anal. 65(5):633–641, 1977Google Scholar
  202. 202.
    Wang T., Deng J., He B. (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Intl. Fed. Clin. Neurophys. 115(12):2744–2753Google Scholar
  203. 203.
    Wang, Y., W. Ruiping, G. Xiaorong and G. Shangkai. Brain–computer interface based on the high-frequency steady-state visual evoked potential. In Proc. 1st International Conference on Neural Interface and Control, pp. 37–39, 2004Google Scholar
  204. 204.
    Wang, Y., Z. Zhang, X. Gao and S. Gao. Lead selection for SSVEP-based brain–computer interface. In Proc. Annual International Conference of IEEE EMBS, pp. 4507–4509, 2004Google Scholar
  205. 205.
    Wang Y., Zhang Z., Li Y., Gao X., Gao S., Yang F. (2004) BCI Competition 2003 – Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans. Biomed. Eng. 51(6):1081–1086PubMedGoogle Scholar
  206. 206.
    Wessberg J., Stambaugh C. R., Kralik J. D., Beck P. D., Laubach M., Chapin J. K., Kim J., Biggs S. J., Srinivasan M. A., Nicolelis M. A. (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361–365PubMedGoogle Scholar
  207. 207.
    Wolpaw E. W., McFarland D. (2004) Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Neuroscience 101(51):17849–17854Google Scholar
  208. 208.
    Wolpaw J. R., Birbaumer N., Heetderks W. J., McFarland D. J., Peckham P. H., Schalk G., Donchin E., Quatrano L. A., Robinson C. J., Vaughan T. M. (2000) Brain–computer interface technology: A review of the first international meeting. IEEE Trans. Rehab. Eng. 8(2):164–173Google Scholar
  209. 209.
    Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M. (2002) Brain–computer interfaces for communication and control. Elect. Clin. Neurophysiol. 113(6):767–791Google Scholar
  210. 210.
    Wolpaw J. R., Flotzinger D., Pfurtscheller G., McFarland D. J. (1997) Timing of EEG-based cursor control. J. Clin. Neurophysiol. 14(6):529–538PubMedGoogle Scholar
  211. 211.
    Wolpaw J. R., Loeb G. E., Allison B. Z., Donchin E., Feix do Nascimento O., Heetderks W. J., Nijboer F., Shain W. G., Turner J. N. (2006) BCI Meeting 2005 – Workshop on signals and recording methods. IEEE Trans. Neural. Sys. Reh. Eng. 14(2):138–141Google Scholar
  212. 212.
    Wolpaw J. R., McFarland D., Neat G. W., Forneris C. A. (1991) An EEG-based brain–computer interface for cursor control. Elect. Clin. Neurophysiol. 70:710–523Google Scholar
  213. 213.
    Wolpaw J. R., McFarland D. J. (1994) Multichannel EEG-based brain–computer communication. Elect. Clin. Neurophysiol. 90(6):444–449Google Scholar
  214. 214.
    Wu, W., M. J. Black, Y. Gao, E. Bienenstock, A. Shaikhounix, J. P. Donoghue. Neural decoding of cursor motion using a Kalman Filter. In Proc NIPS 2002, 2002Google Scholar
  215. 215.
    Wu W., Black M. J., Mumford D., Gao Y., Bienenstock E., Donoghue J.P. (2004) Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng. 51(6):933–942PubMedGoogle Scholar
  216. 216.
    Xu N., Gao X., Hong B., Miao X., Gao S., Yang F. (2004) BCI Competition 2003 – Data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. IEEE Trans. Biomed. Eng. 51(6):1067–1072PubMedGoogle Scholar
  217. 217.
    Xu, W., C. Guan, C. E. Siong, S. Ranganatha, M. Thulasidas and J. Wu. High accuracy classification of EEG signals. In Proc. 17th international conference on pattern recognition (ICPR’04), pp. 391–394, 2004Google Scholar
  218. 218.
    Yom-Tov E., Inbar G.F. (2002) Feature selection for the classification of movements from single movement-related potentials. IEEE Trans. Neural. Sys. Reh. Eng. 10(3):170–177Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. G. Mason
    • 1
  • A. Bashashati
    • 2
  • M. Fatourechi
    • 2
  • K. F. Navarro
    • 3
  • G. E. Birch
    • 1
    • 2
  1. 1.Neil Squire SocietyBrain Interface LaboratoryBurnabyCanada
  2. 2.Department of Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada
  3. 3.Department of Computer SystemsUniversity of TechnologySydneyAustralia

Personalised recommendations