Annals of Biomedical Engineering

, Volume 34, Issue 9, pp 1429–1441

Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs with Encapsulated Cells


Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.


Photocrosslinking Hydrogels Layered manufacturing Rapid prototyping Tissue engineering Scaffold fabrication Fibroblasts 



Penetration depth


Critical exposure (energy/area)


Average energy exposure (energy/area)


Power of the laser


Speed of the laser


Beam diameter


Initial weight, weight of the sample immediately after fabrication


Dry weight, weight of the sample after the excess water had evaporated


Swollen weight, weight of the sample after allowed to swell in distilled water


Re-dry weight, weight of the sample after allowed to dry following swelling


  1. 1.
    Ang, T. H., F. S. A. Sultana, D. W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, and S. H. Teoh. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Mater. Sci. Eng. C 20:35–42, 2002.CrossRefGoogle Scholar
  2. 2.
    Arcaute, K., L. Ochoa, F. Medina, C. Elkins, B. Mann, and R. Wicker. Three-dimensional PEG hydrogel construct fabrication using stereolithography. Mater. Res. Soc. Symp. Proc. 874:L5.5.1–7, 2005.Google Scholar
  3. 3.
    Arcaute, K., L. Ochoa, B. Mann, and R. Wicker. Hydrogels in stereolithography. Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1–3, 2005.Google Scholar
  4. 4.
    Arcaute, K., L. Ochoa, B. K. Mann, and R. B. Wicker. Stereolithography of PEG hydrogel multi-lumen nerve regeneration conduits. ASME IMECE2005-81436 American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, November 5–11, Orlando, Florida, 2005.Google Scholar
  5. 5.
    Bryant, S. J. and K. S. Anseth. The effect of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22:619–626, 2001.PubMedCrossRefGoogle Scholar
  6. 6.
    Bryant, S. J., C. R. Nuttelman, and K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci., Polym. Ed. 11.5:439–457, 2000.CrossRefGoogle Scholar
  7. 7.
    Bryant, S. J., K. S. Anseth, D. A. Lee, and D. L. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 22:1143–1149, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Burdick, J. A. and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooke, M. N., J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Mater. Res. Part B: Appl. Biomater. 64B:65–69, 2002.CrossRefGoogle Scholar
  10. 10.
    Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 9/10:1316–1322, 2004.Google Scholar
  11. 11.
    Gunn, J. W., S. D. Turner, and B. K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. 72A(1):91–97, 2005.CrossRefGoogle Scholar
  12. 12.
    Hahn, M. S., L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2534, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Jacobs, P. F. Fundamental processes. In: Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, edited by P. F. Jacobs and D. T. Reid. Dearborn, Michigan: Society of Manufacturing Engineers, 1992, pp. 79–110.Google Scholar
  14. 14.
    Klaassen, C. D. Casarett and Doull's Toxicology: The Basic Science of Poisons. New York: Mc Graw-Hill Medical Publishing Division, 2001, p 662.Google Scholar
  15. 15.
    Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Leach, J. B., K. A. Bivens, C. W. Patrick, and C. E. Schmidt. Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82.5:578–589, 2003.CrossRefGoogle Scholar
  17. 17.
    Lee, I. H. and D. W. Cho. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. Int. J. Adv. Manuf. Technol. 22:410–416, 2003.CrossRefGoogle Scholar
  18. 18.
    Lee, J. H., R. K. Prud’homme, and I. A. Aksay. Cure depth in photopolymerization: Experiments and theory. J. Mater. Res. 16.2:3536–3544, 2001.CrossRefGoogle Scholar
  19. 19.
    Liu, V. and S. N. Bhatia. Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56:1635–1647, 2004.CrossRefGoogle Scholar
  20. 20.
    Liu, V. A. and S. N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdev. 4:257–266, 2002.CrossRefGoogle Scholar
  21. 21.
    Lu, L. and A. G. Mikos. The importance of new processing techniques in tissue engineering. Mater. Res. Soc. Bull. 21(11):28–32, 1996.Google Scholar
  22. 22.
    Ma, P. X. Scaffolds for tissue fabrication. Mater. Today 30–40, 2004.Google Scholar
  23. 23.
    Mann, B. K. and J. L. West. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J. Biomed. Mater. Res. 60:86–93, 2002.PubMedCrossRefGoogle Scholar
  24. 24.
    Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogles with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Mann, B. K., R. H. Schmedlen, and J. L. West. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells in peptide-modified scaffolds. Biomaterials 22:439–44, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Nguyen, K. T. and J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Sawhney, A. S., C. P. Pathak, and J. A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587, 1993.CrossRefGoogle Scholar
  28. 28.
    Ulrich-Vinter, M., M. D. Maloney, J. J. Goater, K. Soballe, M. B. Goldring, R. J. O’Keefe, and E. M. Schwarz. Light-Activated Gene Transduction Enhances Adeno-Associated Virus Vector-Mediated Gene Expression in Human Articular Chondrocytes. Arthritis Rheum. 46.8:2095–2104, 2002.CrossRefGoogle Scholar
  29. 29.
    Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540, 2003.PubMedCrossRefGoogle Scholar
  30. 30.
    Vozzi, G., V. Chiono, G. Ciardelli, P. Giusti, A. Previti, C. Cristallini, N. Barbani, G. Tantussi, and A. Ahluwalia. Microfabrication of biodegradable polymeric structures for guided tissue engineering. Mat. Res. Soc. Symp. Proc. EXS-1:F5.22.1–3, 2004.Google Scholar
  31. 31.
    Wicker, R. B., F. Medina, A. Ranade, and J. A. Palmer. Embedded micro-channel fabrication using line-scan stereolithography. Assembly Automat. 25(4):316–329, 2005.CrossRefGoogle Scholar
  32. 32.
    Williams, C. G., A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Williams, C. G., T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 9/4:679–688, 2003.CrossRefGoogle Scholar
  34. 34.
    Zalispky, S. and J. M. Harris. Poly(ethylene glycol) Chemistry and Biological Applications. Wash: Am. Chem. Soc. Ser. 680, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Karina Arcaute
    • 1
  • Brenda K. Mann
    • 2
  • Ryan B. Wicker
    • 1
  1. 1.Department of Mechanical Engineering, W. M. Keck Border Biomedical Manufacturing and Engineering LaboratoryUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations