Annals of Biomedical Engineering

, Volume 34, Issue 8, pp 1247–1258 | Cite as

Evolution of Oxygen and Glucose Concentration Profiles in a Tissue-Mimetic Culture System of Embryonic Stem Cells

  • David M. Cochran
  • Dai Fukumura
  • Marek Ancukiewicz
  • Peter Carmeliet
  • Rakesh K. Jain


A tissue-mimetic culture system (TMCS) in which cells are sandwiched between two glass slides provides an ideal microenvironment for studying the effects of oxygen and nutrient gradients on cells in culture. A mathematical model was utilized to predict the time course of the development of oxygen and glucose concentration gradients within the TMCS. Oxygen and glucose consumption rates of mouse embryonic stem cells were measured as parameters for the model. The model predicts oxygen and glucose concentration profiles directly using a single experimentally controlled variable, the seeding density of cells within the system. The model predicts that the time required for the gradients to reach steady state is inversely related to the cell density, and the penetration depth of the gradients into the TMCS is inversely related to the square root of the cell density. Experimental oxygen concentration measurements were performed at a cell density of 9.1×106 cells cm−3, and the gradient was found to develop to a steady-state profile within 20 min and penetrate approximately 2 mm into the TMCS, consistent with the theoretical predictions. This model and the TMCS provide useful tools for investigating the effect of the metabolic microenvironment on cells in culture.


Mathematical modeling Cancer Hypoxia Stem cell biology Tissue-mimetic culture 



tissue-mimetic culture system

ES cell

embryonic stem cell


hypoxia-inducible factor


Oxygen biosensor


oxygen consumption rate



The authors thank the NIH for grant support (NIH grant P01 CA80124), and DMC thanks the Whitaker Foundation for fellowship support for this work. The authors would like to acknowledge William M. Deen (Chemical Engineering, MIT) for his scientific advice on the mathematical model used, Clark Colton and Daryl Powers (Chemical Engineering, MIT) for their assistance in measuring the stirred-chamber oxygen consumption rates, and Tim Padera and Ryan Lanning (Massachusetts General Hospital) for their editorial and scientific advice in the preparation of the manuscript.


  1. 1.
    Acker, H., G. Holtermann, J. Carlsson, and T. Nederman. Methodological aspects of microelectrode measurements in cellular spheroids. Adv. Exp. Med. Biol. 159:445–462, 1983.PubMedGoogle Scholar
  2. 2.
    Aisenberg, A. C. The Glycolysis and Respiration of Tumors. New York: Academic Press, 1961.Google Scholar
  3. 3.
    Anderson-Sprecher, R. Model comparisons and R2. Am. Statistician 48:113–117, 1994.CrossRefGoogle Scholar
  4. 4.
    Balin, A. K., B. P. Goodman, H. Rasmussen, and V. J. Cristofalo. The effect of oxygen tension on the growth and metabolism of WI-38 cells. J. Cell Physiol. 89:235–249, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Balis, U. J., K. Behnia, B. Dwarakanath, S. N. Bhatia, S. J. Sullivan, M. L. Yarmush, and M. Toner. Oxygen consumption characteristics of porcine hepatocytes. Metab. Eng. 1:49–62, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Carmeliet, P., Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, E. Keshert, and E. Keshet. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Casciari, J. J., S. V. Sotirchos, and R. M. Sutherland. Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Prolif. 25:1–22, 1992.PubMedGoogle Scholar
  8. 8.
    Casciari, J. J., S. V. Sotirchos, and R. M. Sutherland. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell Physiol. 151:386–394, 1992.PubMedCrossRefGoogle Scholar
  9. 9.
    Deen, W. M. Analysis of Transport Phenomena. New York: Oxford University Press, 1998.Google Scholar
  10. 10.
    Foy, B. D., A. Rotem, M. Toner, R. G. Tompkins, and M. L. Yarmush. A device to measure the oxygen uptake rate of attached cells: Importance in bioartificial organ design. Cell Transplant 3:515–527, 1994.PubMedGoogle Scholar
  11. 11.
    Fuchs, E., T. Tumbar, and G. Guasch. Socializing with the neighbors: Stem cells and their niche. Cell 116:769–778, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Geng, Y. J. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann. N. Y. Acad Sci. 1010:687–697, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Grossmann, U., J. Carlsson, and H. Acker. Mathematical analysis of the influence of different supply conditions on pO2 fields inside cellular spheroids by aid of finite element method. In: Oxygen Transport to Tissue, edited by H. I. Bicher and D. F. Bruley. New York: Plenum Press, 1983, pp. 481–486.Google Scholar
  14. 14.
    Guarino, R. D., L. E. Dike, T. A. Haq, J. A. Rowley, J. B. Pitner, and M. R. Timmins. Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnol. Bioeng. 86:775–787, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Helmlinger, G., M. Endo, N. Ferrara, L. Hlatky, and R. K. Jain. Formation of endothelial cell networks. Nature 405:139–141, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Helmlinger, G., F. Yuan, M. Dellian, and R. K. Jain. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 3:177–182, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    Hlatky, L., and E. L. Alpen. Two-dimensional diffusion limited system for cell growth. Cell Tissue Kinet. 18:597–611, 1985.PubMedGoogle Scholar
  18. 18.
    Hlatky, L., R. K. Sachs, and E. L. Alpen. Joint oxygen-glucose deprivation as the cause of necrosis in a tumor analog. J. Cell Physiol. 134:167–178, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, C. K. The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50:2066–2073, 1982.PubMedCrossRefGoogle Scholar
  20. 20.
    Marusic, M., Z. Bajzer, J. P. Freyer, and S. Vuk-Pavlovic. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 27:73–94, 1994.PubMedGoogle Scholar
  21. 21.
    Mueller-Klieser, W., J. P. Freyer, and R. M. Sutherland. Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br. J. Cancer 53:345–353, 1986.PubMedGoogle Scholar
  22. 22.
    Ramirez-Bergeron, D. L., and M. C. Simon. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system. Stem Cells 19:279–286, 2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Romanko, M. J., R. Rola, J. R. Fike, F. G. Szele, M. L. Dizon, R. J. Felling, C. Y. Brazel, and S. W. Levison. Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog. Neurobiol. 74:77–99, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Thews, G., and H. Hutten. Biophysics of respiratory gas transport. In: Biophysics, edited by W. Hoppe, H. Lohmann, and H. Ziegler. Berlin: Springer-Verlag, 1983, 12.16: 503–514.Google Scholar
  25. 25.
    Torres Filho, I. P., and M. Intaglietta. Microvessel pO2 measurements by phosphorescence decay method. Am. J. Physiol. 265:H1434–1438, 1993.PubMedGoogle Scholar
  26. 26.
    Tziampazis, E., and A. Sambanis. Modeling of cell culture processes. Cytotechnology 14:191–204, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Tziampazis, E., and A. Sambanis. Tissue engineering of a bioartificial pancreas: Modeling the cell environment and device function. Biotechnol. Prog. 11:115–126, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Vanderkooi, J. M., G. Maniara, T. J. Green, and D. F. Wilson. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262:5476–5482, 1987.PubMedGoogle Scholar
  29. 29.
    Wodnicka, M., R. D. Guarino, J. J. Hemperly, M. R. Timmins, D. Stitt, and J. B. Pitner. Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J. Biomol. Screen 5:141–152, 2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Yarmush, M. L., M. Toner, J. C. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins. Hepatic tissue engineering. Development of critical technologies. Ann. N. Y. Acad Sci. 665:238–252, 1992.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • David M. Cochran
    • 1
  • Dai Fukumura
    • 1
  • Marek Ancukiewicz
    • 1
  • Peter Carmeliet
    • 2
  • Rakesh K. Jain
    • 1
  1. 1.Edwin L. Steele Laboratory, Department of Radiation OncologyMassachusetts General HospitalBostonUSA
  2. 2.Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology (VIB)University of LeuvenLeuvenBelgium

Personalised recommendations