Annals of Biomedical Engineering

, Volume 34, Issue 8, pp 1239–1246 | Cite as

Overexpression of Lysyl Oxidase to Increase Matrix Crosslinking and Improve Tissue Strength in Dermal Wound Healing

  • Ying-Ka Ingar Lau
  • Andre M. Gobin
  • Jennifer L. West
Article

In this study, we aimed to increase crosslinking in collagen and elastin in the extracellular matrix through overexpression of lysyl oxidase (LO) in order to improve mechanical strength in dermal wounds during healing. We had used a gene activated matrix (GAM) approach to locally deliver plasmid DNA (pDNA) complexed with polyethylenimine (PEI) in collagen gels at the wound site for localized and sustained transfection of cells involved in the healing process. We first demonstrated in vitro that PEI-pDNA complexes in collagen gels could be taken up and expressed by cultured fibroblasts for at least 20 days. In vitro studies showed that fibroblast-seeded GAMs with the LO transgene exhibited over a 3-fold increase in mechanical strength as compared with a green fluorescent protein (GFP)-transgene control. Addition of an inhibitor of LO abolished this increase. We applied this system in a rat dermal wound healing model and showed that treatment with LO-producing GAMs led to significantly enhanced mechanical strength of the wound site.

Keywords

Wound healing Gene therapy Mechanical strength 

REFERENCES

  1. 1.
    Ando, J., H. Tsuboi, R. Korenaga, K. Takhashi, K. Kosaki, M. Isshiki, T. Tojo, Y. Takada, and A. Kamiya. Differential display and cloning of shear stress-responsive messenger RNAs in human endothelial cells. Biochem. Biophys. Res. Commun. 225(2):347–351, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    Boak, A. M., R. Roy, J. Berk, L. Taylor, P. Polgar, R. H. Goldstein, and H. M. Kagan. Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and prostaglandin E2. Am. J. Respir. Cell Mol. Biol. 11(6):751–755, 1994.PubMedGoogle Scholar
  3. 3.
    Bohl, M. K. S., S. J. Leibovich, P. Belem, J. L. West, and L. A. Poole-Warren. Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair Regen. 10(5):286–94, 2002.CrossRefGoogle Scholar
  4. 4.
    Cohen-Sacks, H., V. Elazar, J. Gao, A. Golomb, H. Adwan, N. Korchov, R. J. Levy, M. R. Berger, and G. Golomb. Delivery and expression of pDNA embedded in collagen matrices. J. Control Release 95:309–320, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Csiszar, K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog. Nucleic. Acid Res. Mol. Biol. 70:1–32, 2001.PubMedGoogle Scholar
  6. 6.
    Elbjeirami, W. M., E. O. Yonter, B. C. Starcher, J. L. West. Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J. Biomed. Mater. Res. A. 66(3):513–521, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Fang, J., Y. Y. Zhu, E. Smiley, J. Bonadio, J. P. Rouleau, S. A. Goldstein, L. K. McCauley, B. L. Davidson, and B. J. Roessler. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. U S A. 93(12):5753–5758, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Florea, B. I., C. Meaney, H. E. Junginger, and G. Borchard. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS Pharm. Sci. 4(3):E12, 2002.CrossRefGoogle Scholar
  9. 9.
    Gacheru, S. N., K. M. Thomas, S. A. Murray, K. Csiszar, L. I. Smith-Mungo, and H. M. Kagan. Transcriptional and post-transcriptional control of lysyl oxidase expression in vascular smooth muscle cells: effects of TGF-beta 1 and serum deprivation. J. Cell Biochem. 65(3):395–407, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Gavriel, P., and H. M. Kagan. Inhibition by heparin of the oxidation of lysine in collagen by lysyl oxidase. Biochemistry 27(8):2811–2815, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Godbey, W. T., K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 22(5):471–480, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, Y. C., C. Simmons, D. Kaigler, K. G. Rice, and D. J. Mooney. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 12(5):418–426, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Kagan, H. M., and W. Li. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J. Cell Biochem. 88(4):660–672, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Kyriakides, T. R., T. Hartzel, G. Huynh, and P. Bornstein. Regulation of angiogenesis and matrix remodeling by localized, matrix-mediated antisense gene delivery. Mol. Ther. 3(6):842–849, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Lechardeur, D., K. J. Sohn, M. Haardt, P. B. Joshi, M. Monck, R. W. Graham, B. Beatty, J. Squire, H. O’Brodovich, and G. L. Lukacs. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6(4):482–497, 1999.PubMedCrossRefGoogle Scholar
  16. 16.
    LeGrand, E. K. Preclinical promise of Becaplermin (rhPDGF-BB) in wound healing. Am. J. Surg. 176(Suppl 2A):48–54, 1998.CrossRefGoogle Scholar
  17. 17.
    Nelson, J. M., R. F. Diegelmann, and I. K. Cohen. Effect of β-aminopropionitritle and ascorbate on fibroblast migration. Proc. Soc. Exp. Biol. Med. 188:346–352, 1988.PubMedGoogle Scholar
  18. 18.
    Robson, M. The role of growth factors in the healing of chronic wounds. Wound Rep. Reg. 5:12–17, 1997.CrossRefGoogle Scholar
  19. 19.
    Sagara, K., and S. W. Kim. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J. Control Release. 79(1–3):271–281, 2002.PubMedCrossRefGoogle Scholar
  20. 20.
    Stocum, D. L. Wound Repair, Regeneration and Artificial Tissues. Austin: R.G. Landes Company, 1995, pp. 15.Google Scholar
  21. 21.
    Sugiyama, M., M. Matsuura, Y. Takeuchi, J. Kosaka, M. Nango, and N. Oku. Possible mechanism of polycation liposome (PCL)-mediated gene transfer. Biochim. Biophys. Acta. 1660(1–2):24–30, 2004.PubMedGoogle Scholar
  22. 22.
    Tang, S. S., P. C. Trackman, and H. M. Kagan. Reaction of aortic lysyl oxidase with beta-aminopropionitrile. J. Biol. Chem. 258(7):4331–4338, 1983.PubMedGoogle Scholar
  23. 23.
    Thomas, M., Q. Ge, J. J. Lu, J. Chen, and A. M. Klibanov. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm. Res. 22(3):373–380, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas, M., and A. M. Klibanov. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol. 62(1):27–34, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Trackman, P. C., D. Bedell-Hogan, J. Tang, and H. M. Kagan. Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J. Biol. Chem. 267(12):8666–8671, 1992.PubMedGoogle Scholar
  26. 26.
    Udupa, S. L. Inhibition of lysyl oxidase by isoniazid and its effect on wound healing. Indian J. Exp. Biol. 33(4):278–280, 1995.PubMedGoogle Scholar
  27. 27.
    Wiseman, J. W., C. A. Goddard, D. McLelland, and W. H. Colledge. A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene. Ther. 10(19):1654–1662, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ying-Ka Ingar Lau
    • 1
  • Andre M. Gobin
    • 1
  • Jennifer L. West
    • 1
    • 2
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Department of Bioengi-neeringRice UniversityHoustonUSA

Personalised recommendations