Advertisement

Annals of Biomedical Engineering

, Volume 34, Issue 6, pp 1061–1068 | Cite as

Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection

  • Matthew E. Martin
  • Musundi B. Wabuyele
  • Kui Chen
  • Paul Kasili
  • Masoud Panjehpour
  • Mary Phan
  • Bergein Overholt
  • Glenn Cunningham
  • Dale Wilson
  • Robert C. DeNovo
  • Tuan Vo-Dinh
Article

An advanced hyper-spectral imaging (HSI) system has been developed having obvious applications for cancer detection. This HSI system is based on state-of-the-art liquid crystal tunable filter technology coupled to an endoscope. The goal of this unique HSI technology being developed is to obtain spatially resolved images of the slight differences in luminescent properties of malignant versus non-malignant tissues. In this report, the development of the instrument is discussed and the capability of the instrument is demonstrated by observing mouse carcinomas in-vivo. It is shown that the instrument successfully distinguishes between normal and malignant mouse skin. It is hoped that the results of this study will lead to advances in the optical diagnosis of cancer in humans.

Keywords

Hyperspectral imaging (HSI) Fluorescence imaging, Biomedical optics Laser-induced fluorescence 

Notes

ACKNOWLEDGMENTS

The authors would like to thank Dr. Steven Kennel for providing the mice used in this study. The authors would also like to thank Dr. Roberto Lenarduzzi for his assistance with LabView programming. This work was supported by funding from the National Institute of Health under grant number RO1 CA88787-01 and by the U.S Department of Energy (DOE) Office of Chemical and Biological National Security and the DOE Office of Biological and Environmental Research, under contract DEAC05-000OR22725 with UT-Battelle. M. E. Martin, M. B. Wabuyele, Kui Chen, and Paul Kasili are supported by appointments to the Oak Ridge National Laboratory Postdoctoral Research Program administered jointly by the Oak Ridge Institute for Science and Education and Oak Ridge National Laboratory.

REFERENCES

  1. 1.
    Andersson-Engels, S. J., J. Johansson, K. Svanberg, and S. Svanberg. Fluorescence imaging and point measurement of tissue: Applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue. Photochem. Photobiol. 53:807–812, 1991.PubMedGoogle Scholar
  2. 2.
    Bunting, C. A., P. G. Carolan, M. J. Forrest, P. G. Noonan, and A. C. Sharpe. CCD camera as a multichannel analyzer for the spectral and azimuthal resolution of Fabry-Perot fringes. Rev. Sci. Instrum. 59:1488–1490, 1988.CrossRefGoogle Scholar
  3. 3.
    Delaney, P. M., M. R. Harris, and R. G. King. Fiberoptic laser-scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33:573–577, 1994.Google Scholar
  4. 4.
    Gao, G. H., and Z. Lin. Acoustooptic super multispectral imaging. Appl. Opt. 32:3081–3086, 1993.CrossRefGoogle Scholar
  5. 5.
    Gebhart, S. C., W. Lin, and A. Mahadevan-Jansen, Characterization of a spectral imaging system. Presentation at SPIE Photonics West, 2003.Google Scholar
  6. 6.
    Goujon, D., M. Zellwegger, A. Radu, P. Grosjean, B. Weber, H. van den Bergh, P. Monnier, and G. Wagnieres. In vivo autofluorescence imaging of early cancers in the human tracheobroncial tree with a spectrally optimized system. J. Biomed. Opt. 8(1):17–25, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Heintzelman, D., U. Utzinger, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, and R. Richards-Kortum. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem. Photobiol. 72:103–113, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Hsu, E. R., A. M. Gillenwater, R. R. Richards-Kortum, A. Simple. Inexpensive fluorescence spectroscopy system and contrast agent for detection of the molecular changes associated with oral cancer in living tissue. Appl. Spectrosc. 59:1166–1173, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Irene, G., B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus. Gastroenterology 120:1620–1629, 2001.CrossRefGoogle Scholar
  10. 10.
    Jaganath, R., C. Angeletti, R. Levenson, and D. L. Rimm. Diagnostic classification of urothelial cells in urine cytology specimens using exclusively spectral information. Cancer 102(3):186–191, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Levenson, R. M., P. J. Cronin, and N. Harvey. Spectral imaging and biomedicine: New devices, new approaches. AIPR 105–111, 2002.Google Scholar
  12. 12.
    Martin, M. E., M. B. Wabuyele, M. Panjehpour, B. F. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh. A Dual-modality hyperspectral imaging system capable of simultaneous fluorescence and reflectance imaging. Med. Eng. Phys. 28(2):149–55, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Martin, M. E., M. B. Wabuyele, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, T. Moyers, S. G. Song, and T. Vo-Dinh. Dual modality fluorescence and reflectance hyperspectral imaging: Principle and applications. Proc. SPIE 5692:133–139, 2005.CrossRefGoogle Scholar
  14. 14.
    Panjehpour, M., B. Overholt, T. Vo-Dinh, R. C. Haggitt, D. M. Edwards, and F. P. Buckley III. Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus. Gastroenterology 111:93–101, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Panjehpour, M., C. E. Julius, M. N. Phan, T. Vo-Dinh, and S. Overholt. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg. Med. 31:367–373, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Stratis, D. N., K. L. Eland, J. C. Carter, S. J. Tomlinson, and S. M. Angel. Comparison of acousto-optic and liquid crystal tunable filters for laser-induced breakdown spectroscopy. App. Spectrosc. 55(8):999–1004. 1999.CrossRefGoogle Scholar
  17. 17.
    Sung, K. C., Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum. Combined fluorescence and reflectance spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt. 10(2):2–31, 2005.Google Scholar
  18. 18.
    Vo-Dinh, T. Biomedical Photonics Handbook, New York: CRC Press, 2003.Google Scholar
  19. 19.
    Vo-Dinh, T., M. Panjehpour, B. F. Overholt, and P. Buckley III. Laser-induced differential fluorescence for cancer diagnosis without biopsy. Appl. Spectrosc. 51(1):58–63, 1997.CrossRefGoogle Scholar
  20. 20.
    Vo-Dinh, T., M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley III, and R. Sneed. In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices. Lasers Surg. Med. 16:41–47, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Vo-Dinh, T., D. L. Stokes, M. Wabuyele, M. E. Martin, J. M. Song, R. Jagannathan, E. Michaud, R. J. Lee, and X. Pan. A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng. Med. Biol. 23(5):40–49, 2004.CrossRefGoogle Scholar
  22. 22.
    Wachman, E. S., W. Niu, and D. L. Farkas. AOTF microscope for imaging with increased speed and spectral versatility. Biophy. J. 73(3):1215–1222, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Matthew E. Martin
    • 1
  • Musundi B. Wabuyele
    • 1
  • Kui Chen
    • 1
  • Paul Kasili
    • 1
  • Masoud Panjehpour
    • 2
  • Mary Phan
    • 2
  • Bergein Overholt
    • 2
  • Glenn Cunningham
    • 3
  • Dale Wilson
    • 3
  • Robert C. DeNovo
    • 4
  • Tuan Vo-Dinh
    • 1
    • 5
    • 6
  1. 1.Center for Advanced Biomedical PhoronicsLife Sciences Division, Oak Ridge National LaboratoryTennesseeNorth Carolina
  2. 2.Thompson Cancer Survival CenterKnoxvilleNorth Carolina
  3. 3.Mechanical Engineering DepartmentTennessee Technological UniversityCookevilleNorth Carolina
  4. 4.Department of Small Animal Clinical SciencesUniversity of Tennessee Veterinary SchoolKnoxvilleNorth Carolina
  5. 5.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamNorth Carolina
  6. 6.Present Adress: Fitzpatrick Institute for PhotonicsDuke UniversityDurhamNorth Carolina

Personalised recommendations