Annals of Biomedical Engineering

, Volume 34, Issue 6, pp 936–952 | Cite as

Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry

  • Hwa Liang Leo
  • Lakshmi Prasad Dasi
  • Josie Carberry
  • Hélène A. Simon
  • Ajit P. Yoganathan
Article

Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this paper we characterize the in vitro velocity and Reynolds Shear Stress (RSS) fields inside and downstream of three different prototype trileaflet polymeric heart valves. The fluid dynamic differences are then correlated with variations in valve design parameters. The three valves differ in leaflet thickness, ranging from 80 to 120 μm, and commisural design, either closed, opened, or semi-opened. The valves were subjected to aortic flow conditions and the velocity measured using three-dimensional stereo Particle Image Velocimetry. The peak forward flow phase in the three valves was characterized by a strong central orifice jet of approximately 2 m/s with a flat profile along the trailing edge of the leaflets. Leakage jets, with principle RSS magnitudes exceeding 4,500 dyn/cm2, were observed in all valves with larger leaflet thicknesses and also corresponded to larger leakage volumes. Additional leakage jets were observed at the commissural region of valves with the open and the semi-open commissural designs. The results of the present study indicate that commissural design and leaflet thickness influence valve fluid dynamics and thus the thrombogenic potential of trileaflet polymeric valves.

Keywords

Heart valve PIV Particle Image Velocimetry Thrombogenic Polyurethanes Coaptation Washout Trileaflet valve Polymer 

REFERENCES

  1. 1.
    Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: Effects of leaflet thickness and material. Int. J. Artif. Organs 20(6):327–331, 1997.PubMedGoogle Scholar
  2. 2.
    Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Calcification and fatigue failure in a polyurethane heart value. Biomaterials 16(4):279–285, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernacca, G. M., B. O'Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young's modulus and leaflet thickness. Biomaterials 23(1):45–50, 2002.PubMedCrossRefGoogle Scholar
  4. 4.
    Bodnar, E., and R. Frater, eds. Replacement Cardiac Valves. New York: Pergamon press, 1991, p.482.Google Scholar
  5. 5.
    Chandran, K. B., R. Fatemi, R. Schoephoerster, D. Wurzel, G. Hansen, G. Pantalos, L. S. Yu, and W. J. Kolff. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Artif. Organs 13(2):148–154, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Daebritz, S. H., B. Fausten, B. Hermanns, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg.. 25(6):946–952, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108 (Suppl 1):II134–II139, 2003.PubMedGoogle Scholar
  8. 8.
    Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.PubMedGoogle Scholar
  9. 9.
    Ellis, J. T., and A. P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St Jude medical hemodynamic plus and regent bileaflet mechanical heart valves. J. Thorac. Cardiovasc. Surg. 119(1):83–93, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldsmith, I., S. Mukundan, A. Nugent, and M. D. Rosin. Early clinical experience with the Tissuemed porcine bioprosthesis. Ann. Thorac. Surg. 66(Suppl 6 ):S259–S263, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Herold, M., H. B. Lo, H. Reul, H. Muckter, K. Taguchi, M. Giesiepen, G. Birkle, G. Hollweg, G. Rau, and B. J. Messmer. The Helmoltz-institute-tri-leaflet-polyurethane-heart valve prosthesis: Design, manufacturing and first in-vitro and in vivo results. In: Polyurethanes in Biomedical Engineering II, edited by H. E. A. Planck. Elsevier Science Publishers, 1987, pp. 231–268.Google Scholar
  12. 12.
    Hyde, J. A., J. A. Chinn, and R. E. Phillips Jr.. Polymer heart valves. J. Heart Valve Dis. 8(3):331–339, 1999.PubMedGoogle Scholar
  13. 13.
    Jamieson, W. R., L. H. Burr, W. N. Anderson Jr., J. B. Chambers, J. P. Gams, and C. M. Dowd. Prosthesis-related complications: First-year annual rates. J. Heart Valve Dis. 11(6):758–763, 2002.PubMedGoogle Scholar
  14. 14.
    Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, H. B. Lo, S. Dabritz, C. Rosenbaum, A. Bitter, and K. Ziehe. Advances in design principle and fluid dynamics of a flexible polymeric heart valve. ASAIO Trans. 37(3):M451–M453, 1991.PubMedGoogle Scholar
  15. 15.
    Leat, M. E., and J. Fisher. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. [H]. 209(1):65–69, 1995.Google Scholar
  16. 16.
    Leo, H. L., H. Simon, J. Carberry, S. C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33(4):429–443, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: Design, manufacture and evaluation. Biomaterials 17(19):1857–1863, 1996.PubMedCrossRefGoogle Scholar
  19. 19.
    Sallam, A. M., and N. H. Hwang. Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology 21(6):783–797, 1984.PubMedGoogle Scholar
  20. 20.
    Turitto, V. T., and C. L. Hall. Mechanical factors affecting hemostasis and thrombosis. Thromb. Res. 92(6 Suppl 2):S25–S31, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Vyavahare, N., M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. Sacks, and R. J. Levy. Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46(1):44–50, 1999.PubMedCrossRefGoogle Scholar
  22. 22.
    Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O'Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs. 24(2):95–101, 2001.PubMedGoogle Scholar
  23. 23.
    Woo, Y. R., F. P. Williams, and A. P. Yoganathan. In-vitro fluid dynamic characteristics of the abiomed trileaflet heart valve prosthesis. J. Biomech. Eng. 105(4):338–345, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Woo, Y. R., F. P. Williams, and A. P. Yoganathan. Steady and pulsatile flow studies on a trileaflet heart valve prosthesis. Scand. J. Thorac. Cardiovasc. Surg. 17(3):227–236, 1983.PubMedGoogle Scholar
  25. 25.
    Yoganathan, A. P. Cardiac valve prostheses. In: The Biomedical Engineering Handbook. CRC Press LLC, pp. 127-1–127-23, 2000.Google Scholar
  26. 26.
    Yoganathan, A. P., Y. R. Woo, H. W. Sung, F. P. Williams, R. H. Franch, and M. Jones. In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position. J. Thorac. Cardiovasc. Surg. 92(2):198–209, 1986.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hwa Liang Leo
    • 1
    • 2
  • Lakshmi Prasad Dasi
    • 1
  • Josie Carberry
    • 1
  • Hélène A. Simon
    • 3
  • Ajit P. Yoganathan
    • 1
    • 4
  1. 1.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations