Annals of Biomedical Engineering

, Volume 35, Issue 2, pp 190–200 | Cite as

Physiologic Pulsatile Flow Bioreactor Conditioning of Poly(ethylene glycol)-based Tissue Engineered Vascular Grafts

  • Mariah S. Hahn
  • Melissa K. McHale
  • Eva Wang
  • Rachael H. Schmedlen
  • Jennifer L. West

Mechanical conditioning represents a potential means to enhance the biochemical and biomechanical properties of tissue engineered vascular grafts (TEVGs). A pulsatile flow bioreactor was developed to allow shear and pulsatile stimulation of TEVGs. Physiological 120 mmHg/80 mmHg peak-to-trough pressure waveforms can be produced at both fetal and adult heart rates. Flow rates of 2 mL/sec, representative of flow through small diameter blood vessels, can be generated, resulting in a mean wall shear stress of ∼6 dynes/cm2 within the 3 mm ID constructs. When combined with non-thrombogenic poly(ethylene glycol) (PEG)-based hydrogels, which have tunable mechanical properties and tailorable biofunctionality, the bioreactor represents a flexible platform for exploring the impact of controlled biochemical and biomechanical stimuli on vascular graft cells. In the present study, the utility of this combined approach for improving TEVG outcome was investigated by encapsulating 10T-1/2 mouse smooth muscle progenitor cells within PEG-based hydrogels containing an adhesive ligand (RGDS) and a collagenase degradable sequence (LGPA). Constructs subjected to 7 weeks of biomechanical conditioning had significantly higher collagen levels and improved moduli relative to those grown under static conditions.


Transmural strain Transmural shear Hydrogel Material properties Medial equivalents 



The authors would like to acknowledge funding from the NIH and NSF and a Whitaker Foundation Graduate Research Fellowship to MKM. We thank Jane Grande-Allen, PhD for advice regarding mechanical testing and biochemical analyses, and Marcella Estrella for her technical assistance.


  1. 1.
    Anseth, K. S., C. N. Bowman, and L. BrannonPeppas. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    Birukov, K., and V. Shirinsky. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell Biochem. 144:131–139, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Brossollet, L. Mechanical issues in vascular grafting: a review. Int. J. Artif. Organs 15:579–584, 1992.PubMedGoogle Scholar
  4. 4.
    Bryant, S. B., R. J. Durand, and K. Anseth. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.PubMedCrossRefGoogle Scholar
  6. 6.
    Bryant, S. J., C. R. Nuttelman, and K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11:439–457, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Bryant, S., K. Anseth, D. Lee, and D. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 22:1143–1149, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Bryant, S., T. Chowdhury, D. Lee, D. Bader, and K. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Burdick, J., and K. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Cappadona, C. et al. Phenotype dictates the growth response of vascular smooth muscle cells to pulse pressure in vitro. Exp. Cell Res. 250:174–186, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng, G., and W. Briggs. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ. Res. 80:28–36, 1997.PubMedGoogle Scholar
  12. 12.
    Chiquet, M., and M. Matthisson. Regulation of extracellular matrix synthesis by mechanical stress. Biochem. Cell Biol. 74:737–744, 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    Clerin, V. et al. Tissue engineering of arteries by directed remodeling of intact arterial segments. Tissue Engineering 9: 2003.Google Scholar
  14. 14.
    Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Nat. Acad. Sci. U.S.A. 96:3104–3107, 1999.CrossRefGoogle Scholar
  15. 15.
    Faries, P. et al. A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts. J. Vasc. Surg. 32:1080–1090, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.Google Scholar
  17. 17.
    Gobin, A. S., and J. L. West. Cell migration through defined, synthetic extracellular matrix analogues. FASEB J. 16:2002.Google Scholar
  18. 18.
    Gombotz, W. R., G. H. Wang, T. A. Horbett, and A. S. Hoffman. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25:1547–1562, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. A. 67:87–95, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Gregory, T. R. Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome 43:895–901, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Greisler, H. Interactions at the blood/material interface. Ann. Vasc. Surg. 4:98–103, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Hiles, M. et al. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J. Biomed. Mater. Res. 29:883–891, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Hill-West, J. L., S. M. Chowdhury, M. J. Slepian, and J. A. Hubbell. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Nat. Acad. Sci. U.S.A. 91:5967–5971, 1994.CrossRefGoogle Scholar
  24. 24.
    Hirschi, K. K., J. M. Burt, K. D. Hirschi, and C. Dai. Gap junction communication mediates TGF-β activation and endothelial-induced mural cell differentiation. Circ. Res. 93:429–437, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Isenberg, B., and R. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–939, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Jeong, S. I. et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26:1405–1411, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson, C., T. How, M. Scraggs, C. West, and J. Burns. A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Sci. Int. 109:169–182, 2000.PubMedCrossRefGoogle Scholar
  28. 28.
    Kanda, K., and T. Matsuda. Mechanical stress induced cellular orientation and phenotypic modulation of 3D cultured smooth muscle cells. ASAIO 39: 1993.Google Scholar
  29. 29.
    Kempczinski, R. (ed.) Vascular Surgery. Denver: WB Saunders, 2000.Google Scholar
  30. 30.
    Kim, B. S., J. Nikolovski, J. Bonadio, and D. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle cell tissue. Nat. Biotechnol. 17:979–983, 1999.PubMedCrossRefGoogle Scholar
  31. 31.
    Ku, D., and C. Zhu. The mechanical environment of the artery. In: Hemodynamic Forces and Vascular Cell Biology, edited by B. Sumpio. Austin: RG Landes Company, 1993, pp. 1–23.Google Scholar
  32. 32.
    Kulik, T., and S. Alvarado. Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J. Cell. Physiol. 157:615–624, 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Li, C., and Q. Xu. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell. Signaling 12:435–445, 2000.CrossRefGoogle Scholar
  34. 34.
    Liu, V. A., and S. N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices 4:257–266, 2002.CrossRefGoogle Scholar
  35. 35.
    Long, J., and R. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Lu, H. H., M. D. Kofron, S. F. El-Amin, M. A. Attawia, and C. T. Laurencin. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices. Biochem. Biophys. Res. Commun. 305:882–889, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Miller, E. J., and S. Gay. Collagen – an Overview. Methods Enzymol. 82:3–32, 1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Niklason, L. et al. Functional arteries grown in vitro. Science 284:489–493, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Posey, J., and L. Geddes. Measurement of the modulus of elasticity of the arterial wall. Cardiovasc. Res. Ctr. Bull. 11:83–88, 1973.Google Scholar
  40. 40.
    Ross, J., and R. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22:477–490, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Schmedlen, R. H., W. M. Elbjeirami, Gobin, A. S., and J. L. West. Tissue engineered small-diameter vascular grafts. Clin. Plast. Surg. 30:507-+, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Solan, A., S. Mitchell, M. Moses, and L. E. Niklason. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue Eng. 9:579–586, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Tranquillo, R., T. Girton, B. Bromberek, T. Triebes, and D. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.PubMedCrossRefGoogle Scholar
  44. 44.
    Vacanti, J., and R. Langer. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:SI32–SI34, 1999.PubMedCrossRefGoogle Scholar
  45. 45.
    West, J. L., and J. A. Hubbell. Photopolymerized hydrogel materials for drug delivery applications. Reactive Polym. 25:139–147, 1995.CrossRefGoogle Scholar
  46. 46.
    Whittemore, A., K. Kent, M. Donaldson, N. Couch, and J. Mannick. What is the proper role of polytetrafluoroethylene grafts in infrainguinal reconstruction? J. Vasc. Surg. 10:299–305, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Williams, C. G., A. N. Malik, T. K. Kim, P. N. Manson, and Jh, E. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218, 2005.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson, E. K. Sudhir, and H. Ives. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96:2364–2372, 1995.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Mariah S. Hahn
    • 1
  • Melissa K. McHale
    • 1
  • Eva Wang
    • 1
  • Rachael H. Schmedlen
    • 1
  • Jennifer L. West
    • 1
    • 2
  1. 1.Rice UniversityHoustonUSA
  2. 2.Rice UniversityHoustonUSA

Personalised recommendations