Annals of Biomedical Engineering

, Volume 34, Issue 6, pp 1051–1060 | Cite as

User Customization of the Feature Generator of an Asynchronous Brain Interface

  • Ali Bashashati
  • Mehrdad Fatourechi
  • Rabab K. Ward
  • Gary E. Birch
Original Article

A study that customizes the feature generator parameters of an asynchronous Brain Interface (BI) is discussed. The goal is to detect the presence of a certain pattern, in the ongoing EEG, associated with a specific movement and to improve the system's performance. Results of this study show that customization mostly benefits able-bodied subjects with performance improvements of up to 6.8%. We evaluate the performance of our BI using stratified cross-validation scheme. This scheme repeats the analysis on the different cross-validation sets. It is shown that the performances of the system across the different sets are very similar. Thus, we conclude that a robust performance measure of the system can be obtained by using only one of these performance results.


Brain computer interface BI EEG BI customization Asynchronous BI 


  1. 1.
    Wolpaw, J. R., N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Vaughan, T. M. et al. Guest editorial brain-computer interface technology: A review of the second international meeting. IEEE Trans. Neural Syst. and Rehabil. Eng. 11(2):94–109, 2003.CrossRefGoogle Scholar
  3. 3.
    Mason, S. G., and G. E. Birch. A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11:70–85, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Nicolelis, M. A. Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5):417–422, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Mason, S. G., and G. E. Birch. A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10):1297–1307, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Levine, S. P., J. E. Huggins, S. L. Bement, R. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and R. J. Smith. A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8:180–185, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Yom-Tov, E., and G. F. Inbar. Detection of movement-related potentials from the electro-encephalogram for possible use in a brain-computer interface. Med. Biol. Eng. Comput. 41(1):85–93, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Birch, G. E., P. D. Lawrence, and R. D. Hare. Single trial processing of event related potentials using outlier information. IEEE Trans. Biomed. Eng. 40:59–73, 1993.PubMedCrossRefGoogle Scholar
  9. 9.
    Millan, J. R., and J. Mourino. Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11:159–161, 2003.CrossRefGoogle Scholar
  10. 10.
    Scherer, R., G. R. Muller, C. Neuper, B. Graimann, and G. Pfurtscheller. An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6):979–1984, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Townsend, G., B. Graimann, and G. Pfurtscheller. Continuous EEG classification during motor imagery–simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2):258–265, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Blanchard, G., and B. Blankertz. BI Competition 2003, Dataset IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng. 51(6):1062–1066, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Xu, W., C. Guan, C. E. Siong, S. Ranganatha, M. Thulasidas, and W. Jiankand. High accuracy classification of EEG signal. Proc. of the IEEE Int. Conf. on Pattern Recognition (ICPRA’04) 2:391–394, 2004.Google Scholar
  14. 14.
    Pregenzer, M., and G. Pfurtscheller. Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 7(4):413–419, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Navin Lal, T., M. Schroder, T. Hinterberger, J. Weston, M. Bogden, N. Birbaumer, and B. Scholkpof. Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6):1003–1010, 2004.CrossRefGoogle Scholar
  16. 16.
    Fatourechi, M., A. Bashashati, R. K. Ward, and G. E. Birch. A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface. Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing 5:345–348, 2005.CrossRefGoogle Scholar
  17. 17.
    Witten, I. H., and E. Frank. Data Mining. San Diego, CA: Academic Press 2000.Google Scholar
  18. 18.
    Borisoff, J. F., S. G. Mason, A. Bashashati, and G. E. Birch. Brain computer interface (BCI) design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6):985–992, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou, Yu, S. G. Mason, and G. E. Birch. Enhancing the performance of the LF-ASD brain-computer interface. Proc. of the 24th Annual Conf. and the Annual Fall Meeting of the Biomed. Eng. Society (EMBS/BMES) 3:2443–2444, 2002.CrossRefGoogle Scholar
  20. 20.
    Birch, G. E., Z. Bozorgzadeh, and S. G. Mason. Initial on-line evaluation of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. Trans. Neural Syst. Rehabil. Eng. 11(1):219–224, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ali Bashashati
    • 1
    • 2
  • Mehrdad Fatourechi
    • 1
  • Rabab K. Ward
    • 1
    • 3
  • Gary E. Birch
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  3. 3.Neil Squire SocietyBurnabyCanada
  4. 4.Institute for Computing, Information and Cognitive SystemsVancouverCanada

Personalised recommendations