Numerical Determination of Transmembrane Voltage Induced on Irregularly Shaped Cells
- 740 Downloads
- 99 Citations
Abstract
The paper presents an approach that reduces several difficulties related to the determination of induced transmembrane voltage (ITV) on irregularly shaped cells. We first describe a method for constructing realistic models of irregularly shaped cells based on microscopic imaging. This provides a possibility to determine the ITV on the same cells on which an experiment is carried out, and can be of considerable importance in understanding and interpretation of the data. We also show how the finite-thickness, nonzero-conductivity membrane can be replaced by a boundary condition in which a specific surface conductivity is assigned to the interface between the cell interior (the cytoplasm) and the exterior. We verify the results obtained using this method by a comparison with the analytical solution for an isolated spherical cell and a tilted oblate spheroidal cell, obtaining a very good agreement in both cases. In addition, we compare the ITV computed for a model of two irregularly shaped CHO cells with the ITV measured on the same two cells by means of a potentiometric fluorescent dye, and also with the ITV computed for a simplified model of these two cells.
Key words
Finite elements modeling Induced transmembrane voltage di-8-ANEPPS Electroporation ElectropermeabilizationNotes
ACKNOWLEDGMENTS
This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia. The authors wish to thank Dr Marko Puc for building the switcher device for delivery of electric pulses in the experiments.
REFERENCES
- 1.Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, 3rd edn., New York: Garland, 1994.Google Scholar
- 2.Bedlack, R. S., M. Wei, S. H. Fox, E. Gross, and L. M. Loew. Distinct electric potentials in soma and neurite membranes. Neuron 13:1187–1193, 1994.PubMedCrossRefGoogle Scholar
- 3.Buitenweg, J. R., W. L. Rutten, and E. Marani. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng. 50:501–509, 2003.PubMedCrossRefGoogle Scholar
- 4.Cheng, D. K. L., L. Tung, and E. A. Sobie. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. 277:H351–H362, 1999.PubMedGoogle Scholar
- 5.Fear, E. C., and M. A. Stuchly. Biological cells with gap junctions in low-frequency electric fields. IEEE Trans. Biomed. Eng. 45:856–866, 1998.PubMedCrossRefGoogle Scholar
- 6.Fear, E. C., and M. A. Stuchly. Modeling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45:1259–1271, 1998.PubMedCrossRefGoogle Scholar
- 7.Gabriel, B., and J. Teissié. Fluorescence imaging in the millisecond time range of membrane electropermeabilization of single cell using a rapid ultra-low-light intensifying detection system. Eur. Biophys. J. 27:291–298, 1998.CrossRefGoogle Scholar
- 8.Gascoyne, P. R. C., R. Pethig, J. P. H. Burt, and F. F. Becker. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Biochim. Biophys. Acta. 1146:119–126, 1993.Google Scholar
- 9.Gimsa, J., and D. Wachner. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81:1888–1896, 2001.PubMedGoogle Scholar
- 10.Gimsa, J., and D. Wachner. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 30:463–466, 2001.PubMedCrossRefGoogle Scholar
- 11.Golzio, M., L. Mazzolini, P. Moller, M. P. Rols, and J. Teissie. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Therapy 12:246–251, 2005.PubMedCrossRefGoogle Scholar
- 12.Gowrishankar, T. R., and J. C. Weaver. An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. U.S.A. 100:3203–3208, 2003.PubMedCrossRefGoogle Scholar
- 13.Gross, D., L. M. Loew, and W. Webb. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys. J. 50:339–348, 1986.PubMedGoogle Scholar
- 14.Harris, C. M., and D. B. Kell. The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer. Bioelectrochem. Bioenerg. 11:15–28, 1983.CrossRefGoogle Scholar
- 15.Hassan, N., I. Chatterjee, N. G. Publicover, and G. L. Craviso. Mapping membrane-potential perturbations of chromaffin cells exposed to electric fields. IEEE Trans. Plasma Sci. 30:1516–1524, 2002.CrossRefGoogle Scholar
- 16.Heller, R., R. Gilbert, and M. J. Jaroszeski. Clinical applications of electrochemotherapy. Adv. Drug. Deliv. Rev. 35:119–129, 1999.PubMedCrossRefGoogle Scholar
- 17.Hibino, M., H. Itoh, and K. Kinosita. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, 1993.PubMedGoogle Scholar
- 18.Hibino, M., M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209–220, 1991.PubMedGoogle Scholar
- 19.Huang, X., D. Nguyen, D. W. Greve, and M. M. Domach. Simulation of microelectrode impedance changes due to cell growth. IEEE Sensors J. 4:576–583, 2004.CrossRefGoogle Scholar
- 20.Knisley, S. B., T. F. Blitchington, B. C. Hill, A. O. Grant, W. M. Smith, T. C. Pilkington, and R. E. Ideker. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72:255–268, 1993.PubMedGoogle Scholar
- 21.Kotnik, T., F. Bobanović, and D. Miklavčič. Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem. Bioenerg. 43:285–291, 1997.CrossRefGoogle Scholar
- 22.Kotnik, T., and D. Miklavčič. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–679, 2000.PubMedGoogle Scholar
- 23.Kotnik, T., and D. Miklavčič. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans. Biomed. Eng. 47:1074–1081, 2000.PubMedCrossRefGoogle Scholar
- 24.Lee, D. C., and W. M. Grill. Polarization of a spherical cell in a nonuniform extracellular electric field. Anal. Biomed. Eng. 33:603–615, 2005.CrossRefGoogle Scholar
- 25.Loew, L. M. Voltage sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics Suppl. 1:179–189, 1992.Google Scholar
- 26.Lojewska, Z., D. L. Franks, B. Ehrenberg, and L. M. Loew. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56:121–128, 1989.PubMedGoogle Scholar
- 27.Miklavčič, D., G. Pucihar, M. Pavlovec, S. Ribarič, M. Mali, A. Maček-Lebar, M. Petkovšek, J. Nastran, S. Kranjc, M. Čemažar, and G. Serša. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128, 2005.PubMedCrossRefGoogle Scholar
- 28.Miller, C. E., and C. S. Henriquez. Three-dimensional finite element solution for biopotentials: Erythrocyte in an applied field. IEEE Trans. Biomed. Eng. 35:712–718, 1988.PubMedCrossRefGoogle Scholar
- 29.Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.PubMedCrossRefGoogle Scholar
- 30.Montana, V., D. L. Farkas, and L. M. Loew. Dual-wavelength ratiometric fluorescence measurements of membrane-potential. Biochemistry 28:4536–4539, 1989.PubMedCrossRefGoogle Scholar
- 31.Neumann, E., S. Kakorin, and K. Toensing. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48:3–16, 1999.PubMedCrossRefGoogle Scholar
- 32.Pavlin, M., N. Pavšelj, and D. Miklavčič. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49:605–612, 2002.PubMedCrossRefGoogle Scholar
- 33.Pucihar, G., T. Kotnik, M. Kandušer, and D. Miklavčič. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115, 2001.PubMedCrossRefGoogle Scholar
- 34.Rols, M. P., C. Delteil, M. Golzio, and J. Teissié. Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur. J. Biochem. 254:382–388, 1998.PubMedCrossRefGoogle Scholar
- 35.Schwan, H. P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209, 1957.PubMedGoogle Scholar
- 36.Serša, G., M. Čemažar, and Z. Rudolf. Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Ther. 1:133–142, 2003.Google Scholar
- 37.Somiari, S., J. G. Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone. Theory and in vivo application of electroporative gene delivery. Mol. Ther. 2:178–187, 2000.PubMedCrossRefGoogle Scholar
- 38.Stewart, D. A., T. R. Gowrishankar, and J. C. Weaver. Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans. Plasma Sci. 32:1696–1708, 2004.CrossRefGoogle Scholar
- 39.Susil, R., D. Šemrov, and D. Miklavčič. Electric field induced transmembrane potential depends on cell density and organization. Electro. Magnetobiol. 17:391–399, 1998.Google Scholar
- 40.Šatkauskas, S., M. F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavčič, and L. M. Mir. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther. 5:133–140, 2002.PubMedCrossRefGoogle Scholar
- 41.Šel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.PubMedCrossRefGoogle Scholar
- 42.Teissie, J., and M. P. Rols. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65:409–413, 1993.PubMedGoogle Scholar
- 43.Teissié, J., N. Eynard, B. Gabriel, and M. P. Rols. Electropermeabilization of cell membranes. Adv. Drug Deliver Rev. 35:3–19, 1999.CrossRefGoogle Scholar
- 44.Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60:297–306, 1991.PubMedCrossRefGoogle Scholar
- 45.Valič, B., M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissié, M. P. Rols, and D. Miklavčič. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. 32:519–528, 2003.PubMedCrossRefGoogle Scholar