Numerical Determination of Transmembrane Voltage Induced on Irregularly Shaped Cells

  • G. Pucihar
  • T. Kotnik
  • B. Valič
  • D. Miklavčič


The paper presents an approach that reduces several difficulties related to the determination of induced transmembrane voltage (ITV) on irregularly shaped cells. We first describe a method for constructing realistic models of irregularly shaped cells based on microscopic imaging. This provides a possibility to determine the ITV on the same cells on which an experiment is carried out, and can be of considerable importance in understanding and interpretation of the data. We also show how the finite-thickness, nonzero-conductivity membrane can be replaced by a boundary condition in which a specific surface conductivity is assigned to the interface between the cell interior (the cytoplasm) and the exterior. We verify the results obtained using this method by a comparison with the analytical solution for an isolated spherical cell and a tilted oblate spheroidal cell, obtaining a very good agreement in both cases. In addition, we compare the ITV computed for a model of two irregularly shaped CHO cells with the ITV measured on the same two cells by means of a potentiometric fluorescent dye, and also with the ITV computed for a simplified model of these two cells.

Key words

Finite elements modeling Induced transmembrane voltage di-8-ANEPPS Electroporation Electropermeabilization 



This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia. The authors wish to thank Dr Marko Puc for building the switcher device for delivery of electric pulses in the experiments.


  1. 1.
    Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, 3rd edn., New York: Garland, 1994.Google Scholar
  2. 2.
    Bedlack, R. S., M. Wei, S. H. Fox, E. Gross, and L. M. Loew. Distinct electric potentials in soma and neurite membranes. Neuron 13:1187–1193, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Buitenweg, J. R., W. L. Rutten, and E. Marani. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng. 50:501–509, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng, D. K. L., L. Tung, and E. A. Sobie. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. 277:H351–H362, 1999.PubMedGoogle Scholar
  5. 5.
    Fear, E. C., and M. A. Stuchly. Biological cells with gap junctions in low-frequency electric fields. IEEE Trans. Biomed. Eng. 45:856–866, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Fear, E. C., and M. A. Stuchly. Modeling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45:1259–1271, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Gabriel, B., and J. Teissié. Fluorescence imaging in the millisecond time range of membrane electropermeabilization of single cell using a rapid ultra-low-light intensifying detection system. Eur. Biophys. J. 27:291–298, 1998.CrossRefGoogle Scholar
  8. 8.
    Gascoyne, P. R. C., R. Pethig, J. P. H. Burt, and F. F. Becker. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Biochim. Biophys. Acta. 1146:119–126, 1993.Google Scholar
  9. 9.
    Gimsa, J., and D. Wachner. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81:1888–1896, 2001.PubMedGoogle Scholar
  10. 10.
    Gimsa, J., and D. Wachner. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 30:463–466, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Golzio, M., L. Mazzolini, P. Moller, M. P. Rols, and J. Teissie. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Therapy 12:246–251, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Gowrishankar, T. R., and J. C. Weaver. An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. U.S.A. 100:3203–3208, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gross, D., L. M. Loew, and W. Webb. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys. J. 50:339–348, 1986.PubMedGoogle Scholar
  14. 14.
    Harris, C. M., and D. B. Kell. The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer. Bioelectrochem. Bioenerg. 11:15–28, 1983.CrossRefGoogle Scholar
  15. 15.
    Hassan, N., I. Chatterjee, N. G. Publicover, and G. L. Craviso. Mapping membrane-potential perturbations of chromaffin cells exposed to electric fields. IEEE Trans. Plasma Sci. 30:1516–1524, 2002.CrossRefGoogle Scholar
  16. 16.
    Heller, R., R. Gilbert, and M. J. Jaroszeski. Clinical applications of electrochemotherapy. Adv. Drug. Deliv. Rev. 35:119–129, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Hibino, M., H. Itoh, and K. Kinosita. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, 1993.PubMedGoogle Scholar
  18. 18.
    Hibino, M., M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209–220, 1991.PubMedGoogle Scholar
  19. 19.
    Huang, X., D. Nguyen, D. W. Greve, and M. M. Domach. Simulation of microelectrode impedance changes due to cell growth. IEEE Sensors J. 4:576–583, 2004.CrossRefGoogle Scholar
  20. 20.
    Knisley, S. B., T. F. Blitchington, B. C. Hill, A. O. Grant, W. M. Smith, T. C. Pilkington, and R. E. Ideker. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72:255–268, 1993.PubMedGoogle Scholar
  21. 21.
    Kotnik, T., F. Bobanović, and D. Miklavčič. Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem. Bioenerg. 43:285–291, 1997.CrossRefGoogle Scholar
  22. 22.
    Kotnik, T., and D. Miklavčič. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–679, 2000.PubMedGoogle Scholar
  23. 23.
    Kotnik, T., and D. Miklavčič. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans. Biomed. Eng. 47:1074–1081, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, D. C., and W. M. Grill. Polarization of a spherical cell in a nonuniform extracellular electric field. Anal. Biomed. Eng. 33:603–615, 2005.CrossRefGoogle Scholar
  25. 25.
    Loew, L. M. Voltage sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics Suppl. 1:179–189, 1992.Google Scholar
  26. 26.
    Lojewska, Z., D. L. Franks, B. Ehrenberg, and L. M. Loew. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56:121–128, 1989.PubMedGoogle Scholar
  27. 27.
    Miklavčič, D., G. Pucihar, M. Pavlovec, S. Ribarič, M. Mali, A. Maček-Lebar, M. Petkovšek, J. Nastran, S. Kranjc, M. Čemažar, and G. Serša. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Miller, C. E., and C. S. Henriquez. Three-dimensional finite element solution for biopotentials: Erythrocyte in an applied field. IEEE Trans. Biomed. Eng. 35:712–718, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.PubMedCrossRefGoogle Scholar
  30. 30.
    Montana, V., D. L. Farkas, and L. M. Loew. Dual-wavelength ratiometric fluorescence measurements of membrane-potential. Biochemistry 28:4536–4539, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Neumann, E., S. Kakorin, and K. Toensing. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48:3–16, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Pavlin, M., N. Pavšelj, and D. Miklavčič. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49:605–612, 2002.PubMedCrossRefGoogle Scholar
  33. 33.
    Pucihar, G., T. Kotnik, M. Kandušer, and D. Miklavčič. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Rols, M. P., C. Delteil, M. Golzio, and J. Teissié. Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur. J. Biochem. 254:382–388, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Schwan, H. P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209, 1957.PubMedGoogle Scholar
  36. 36.
    Serša, G., M. Čemažar, and Z. Rudolf. Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Ther. 1:133–142, 2003.Google Scholar
  37. 37.
    Somiari, S., J. G. Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone. Theory and in vivo application of electroporative gene delivery. Mol. Ther. 2:178–187, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Stewart, D. A., T. R. Gowrishankar, and J. C. Weaver. Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans. Plasma Sci. 32:1696–1708, 2004.CrossRefGoogle Scholar
  39. 39.
    Susil, R., D. Šemrov, and D. Miklavčič. Electric field induced transmembrane potential depends on cell density and organization. Electro. Magnetobiol. 17:391–399, 1998.Google Scholar
  40. 40.
    Šatkauskas, S., M. F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavčič, and L. M. Mir. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther. 5:133–140, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Šel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.PubMedCrossRefGoogle Scholar
  42. 42.
    Teissie, J., and M. P. Rols. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65:409–413, 1993.PubMedGoogle Scholar
  43. 43.
    Teissié, J., N. Eynard, B. Gabriel, and M. P. Rols. Electropermeabilization of cell membranes. Adv. Drug Deliver Rev. 35:3–19, 1999.CrossRefGoogle Scholar
  44. 44.
    Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60:297–306, 1991.PubMedCrossRefGoogle Scholar
  45. 45.
    Valič, B., M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissié, M. P. Rols, and D. Miklavčič. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. 32:519–528, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • G. Pucihar
    • 1
  • T. Kotnik
    • 1
  • B. Valič
    • 1
  • D. Miklavčič
    • 1
    • 2
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations