Annals of Biomedical Engineering

, Volume 34, Issue 3, pp 446–454 | Cite as

Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast–Collagen Cultures



Interstitial fluid flow, critical for macromolecular transport, was recently shown to drive fibroblast differentiation and perpendicular cell and matrix alignment in 3D collagen cultures. Here we explore the mechanisms underlying this flow-induced cell and collagen alignment. Cell and matrix alignment was assessed from 3D confocal reflectance stacks using a Fast Fourier Transform method. We found that human dermal and lung fibroblasts align perpendicular to flow in the range of 5–13 μm/s (0.1–0.3 dyn/cm2) in collagen; however, neither cells nor matrix fibers align in fibrin cultures, which unlike collagen, is covalently cross-linked and generally degraded by cell fibrinolysis. We also found that even acellular collagen matrices align weakly upon exposure to flow. Matrix alignment begins within 12 h of flow onset and continues, along with cell alignment, over 48 h. Together, these data suggest that interstitial flow first induces collagen fiber alignment, providing contact guidance for the cells to orient along the aligned matrix; later, the aligned cells further remodel and align their surrounding matrix fibers. These findings help elucidate the effects of interstitial flow on cells in matrices and have relevance physiologically in tissue remodeling and in tissue engineering applications.


Fibrin In vitro Mechanobiology Shear stress 



This work was funded by grants from the Whitaker Foundation (RG-01-0348) and the National Science Foundation (BES-0134551).


  1. 1.
    Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: Magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120:660–666, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., H. Nguyen, R. M. Rangayyan, S. Walsh, and C. B. Frank. A Fourier domain directional filtering method for analysis of collagen alignment in ligaments. IEEE Trans. Biomed. Eng. 34:509–518, 1987.PubMedCrossRefGoogle Scholar
  4. 4.
    Choe, M. M., P. H. S. Sporn, and M. A. Swartz. An in vitro airway wall model of remodeling. Am. J. Physiol. Lung Cell Mol. Physiol. 285:L427–L433, 2003.PubMedGoogle Scholar
  5. 5.
    Costa, K. D., E. J. Lee, and J. W. Holmes. Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9:567–577, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    De Wever, O., and M. Mareel. Role of tissue stroma in cancer cell invasion. J. Pathol. 200:429–447, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Desmouliere, A., C. Guyot, and C. Gabbiani. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int. J. Dev. Biol. 48:509–517, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Eastwood, M., V. C. Mudera, D. A. McGrouther, and R. A. Brown. Effect of precise mechanical loading on fibroblast populated collagen lattices: Morphological changes. Cell Motil. Cytoskeleton 40:13–21, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Eckes, B., P. Zigrino, D. Kessler, O. Holtkotter, P. Shephard, C. Mauch, and T. Krieg. Fibroblast–matrix interactions in wound healing and fibrosis. Matrix Biol. 19:325–332, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Ehrlich, H. P., and T. M. Krummel. Regulation of wound healing from a connective tissue perspective. Wound Repair Regen. 4:203–210, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Farsi, J. M., and J. E. Aubin. Microfilament rearrangements during fibroblast-induced contraction of three-dimensional hydrated collagen gels. Cell Motil. 4:29–40, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Friedl, P., and E. B. Brocker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Friedl, P., K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zanker. Migration of highly aggressive mv3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 57:2061–2070, 1997.PubMedGoogle Scholar
  14. 14.
    Friedl, P., K. S. Zanker, and E. B. Brocker. Cell migration strategies in 3-d extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Technol. 43:369–378, 1998.CrossRefGoogle Scholar
  15. 15.
    Girton, T. S., V. H. Barocas, and R. T. Tranquillo. Confined compression of a tissue equivalent: Collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124:568–575, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124:401–404, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Guido, S., and R. T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J. Cell Sci. 105:317–31, 1993.PubMedGoogle Scholar
  18. 18.
    Happel, J., and H. Brenner. Low Reynolds Number Hydrodynamics. Dordrecht: Kluwer Academic Publishers, 1991, pp. 392–399.Google Scholar
  19. 19.
    Jenkins, G., K. L. Redwood, L. Meadows, and M. R. Green. Effect of gel re-organization and tensional forces on alpha 2 beta 1 integrin levels in dermal fibroblasts. Eur. J. Biochem. 263:93–103, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, A. A., D. A. Graham, S. Dela Cruz, A. Ratcliffe, and W. J. Karlon. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J. Biomech. Eng. 124:37–43, 2002.PubMedCrossRefGoogle Scholar
  21. 21.
    Ng, C. P., C. L. E. Helm, and M. A. Swartz. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68:258–264, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Ng, C. P., and M. A. Swartz. Fibroblast alignment under interstitial fluid flow using a novel 3-d tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–H1777, 2003.PubMedGoogle Scholar
  24. 24.
    Nishimura, T., and M. P. Ansell. Fast Fourier transform and filtered image analyses of fiber orientation in osb. Wood Sci. Technol. 36:287–307, 2002.CrossRefGoogle Scholar
  25. 25.
    Palmer, B. M., and R. Bizios. Quantitative characterization of vascular endothelial cell morphology and orientation using Fourier transform analysis. J. Biomech. Eng. 119:159–165, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng.33:1469–1490, 2005.CrossRefGoogle Scholar
  27. 27.
    Pourdeyhimi, B., R. Dent, and H. Davis. Measuring fiber orientation in nonwovens, 3: Fourier transform. Text. Res. J. 67:143–151, 1997.Google Scholar
  28. 28.
    Schense, J. C., and J. A. Hubbell. Cross-linking exogenous bifunctional peptides into fibrin gels with factor xiiia. Bioconjug. Chem. 10:75–81, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Tranquillo, R. T. Self-organization of tissue-equivalents: The nature and role of contact guidance. Biochem. Soc. Symp. 65:27–42, 1999.PubMedGoogle Scholar
  31. 31.
    van Zuijlen, P. P. M., H. J. C. de Vries, E. N. Lamme, J. S. E. Coppens, J. van Marle, R. W. Kreis, and E. Middelkoop. Morphometry of dermal collagen orientation by fourier analysis is superior to multi-observer assessment. J. Pathol. 198:284–291, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, D. M., and J. M. Tarbell. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117:358–63, 1995.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, J. H., and E. S. Grood. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect. Tissue Res. 41:29–36, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Wei, J., and M. B. Russ. Convection and diffusion in tissues and tissue-cultures. J. Theor. Biol. 66:775–787, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EFPL)LausanneSwitzerland
  3. 3.Institute of Bioengineering, Station 15École Polytechnique Fédérale de Lausanne (EFPL)LausanneSwitzerland

Personalised recommendations