Annals of Biomedical Engineering

, Volume 34, Issue 3, pp 494–505 | Cite as

Metastatic Burst Fracture Risk Assessment Based on Complex Loading of the Thoracic Spine

  • Craig E. Tschirhart
  • Joel A. Finkelstein
  • Cari M. WhyneEmail author
Original Article


The mechanical integrity of vertebral bone is compromised when metastatic cancer cells migrate to the spine, rendering it susceptible to burst fracture under physiologic loading. Risk of burst fracture has been shown to be dependent on the magnitude of the applied load, however limited work has been conducted to determine the effect of load type on the stability of the metastatic spine. The objective of this study was to use biphasic finite element modeling to evaluate the effect of multiple loading conditions on a metastatically-involved thoracic spinal motion segment. Fifteen loading scenarios were analyzed, including axial compression, flexion, extension, lateral bending, torsion, and combined loads. Additional analyses were conducted to assess the impact of the ribcage on the stability of the thoracic spine. Results demonstrate that axial loading is the predominant load type leading to increased risk of burst fracture initiation, while rotational loading led to only moderate increases in risk. Inclusion of the ribcage was found to reduce the potential for burst fracture by 27%. These findings are important in developing a more comprehensive understanding of burst fracture mechanics and in directing future modeling efforts. The results in this study may also be useful in advising less harmful activities for patients affected by lytic spinal metastases.


Spine Tumors Burst fracture Finite element modeling Ribcage  



vertebral bulge


load-induced canal narrowing


posterior wall tensile hoop strain



Support for this work was provided by Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Argoubi, M., and A. Shirazi-Adl. Poroelastic creep response analysis of a lumbar motion segment in compression. J. Biomech. 29(10):1331–1339, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    Berry, J. L., J. M. Moran, W. S. Berg, and A. D. Steffee. A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12(4):362–367, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Brickley-Parsons, D., and M. J. Glimcher. Is the chemistry of collagen in intervertebral discs an expression of Wolff's law. Spine 9(2):148–163, 1984.PubMedCrossRefGoogle Scholar
  4. 4.
    Brolin, K., and P. Halldin. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine 29(4):376–385, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown, T. D., and M. S. Vrahas. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 2(1):32–38, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. 203:71–75, 1989.Google Scholar
  7. 7.
    Crawford, R. P., and T. M. Keaveny. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine 29(20):2248–2255, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Dimar, J. R., M. J. Voor, Y. M. Zhang, and S. D. Glassman. A human cadaver model for determination of pathologic fracture threshold resulting from tumors destruction of the vertebral body. Spine 23(11):1209–1214, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Ebihara, H., M. Ito, K. Abumi, H. Taneichi, Y. Kotani, A. Minami, and K. Kaneda. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine: A sheep model study. Spine 29(9):994–999, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Granhed, H., R. Jonson, and T. Hansson. Mineral content and strength of lumbar vertebrae. A cadaver study. Acta Orthop. Scand. 60(1):105–109, 1989.PubMedGoogle Scholar
  11. 11.
    Han, J. S., V. K. Goel, J. Y. Ahn, J. Winterbottom, D. McGowan, J. Weinstein, and T. Cook. Loads in the spinal structures during lifting: Development of a three-dimensional comprehensive biomechanical model. Eur. Spine J. 4(3):153–168, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Holdsworth, F. W. Fractures, dislocations, and fracture-dislocations of the spine. J. Bone Joint Surg. 45B(1):6–20, 1963.Google Scholar
  13. 13.
    Hong, J. H., J. H. Ah, T. H. Lim, and H. S. An. Correlation among permeability, apparent density, and porosity of human lumbar vertebral trabecular bone. In: Proceedings of the Transactions of the 44th Annual Meeting, Orthopaedic Research Society, New Orleans, 1998.Google Scholar
  14. 14.
    Jemal, A., R. C. Tiwari, T. Murray, A. Ghofoor, A. Samuels, E. J. Feuer, and M. J. Thun. Cancer statistics. CA A Cancer J. Clin. 54:8–29, 2004.Google Scholar
  15. 15.
    Kopperdahl, D. L., and T. M. Keaveny. Yield strain behavior of trabecular bone. J. Biomech. 31(7):601–608, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Lotz, J. C., P. A. Glazer, and E. C. Gryler. Tensile properties of the human vertebral endplate. In: Proccedings of the 22nd Annual Symposium of the International Society for the Study of the Lumbar Spine, Helsinki, Finland, 1995.Google Scholar
  17. 17.
    McCutchen, C. W. The friction properties of animal joints. Wear 5(1):1–17, 1962.CrossRefGoogle Scholar
  18. 18.
    McGill, S. M., and R.W. Norman. Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11(7):666–678, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Miller, J. A. A., A. B. Schultz, D. N. Warwick, and D. L. Spencer. Mechanical properties of lumbar spine motion segments under large loads. J. Biomech. 19(1):79–84, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Mosekilde, L., L. Mosekilde, and C. C. Danielsen. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27(4):517–524, 1999.PubMedCrossRefGoogle Scholar
  22. 22.
    Oda, I., K. Abumi, D. Lu, Y. Shono, and K. Keneda. Biomechanical role of the posterior elements, costovertebral joints, and ribcage in the stability of the thoracic spine. Spine 21(12):1423–1433, 1996.PubMedCrossRefGoogle Scholar
  23. 23.
    Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. Ultimate strength of the lumbar spine in flexion—An in vitro study. J. Biomech. 23(5):453–460, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J. Biomech. 26(10):1227–1236, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Panjabi, M. M., T. Oxland, K. Takata, V. Goel, J. Duranceau, and M. Krag. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18(10):1298–1310, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. 76-A(3):413–424, 1994.Google Scholar
  27. 27.
    Panjabi, M. M., K. Takata, V. Goel, D. Federico, T. Oxland, J. Duranceau, and M. Krag. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16(8):888–901, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Polikeit, A., L. P. Nolte, and S. J. Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 28(10):991–996, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Puttlitz, C. M. A biomechanical investigation of the craniovertebral junction. Doctoral thesis, University of Iowa, 1999.Google Scholar
  30. 30.
    Roth, S. E., P. Mousavi, J. Finkelstein, E. Chow, H. Kreder, and C. M. Whyne. Metastatic burst fracture risk prediction using biomechanically based equations. Clin. Orthop. Relat. Res. 419:83–90, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Schaberg, J., and B. J. Gainor. A profile of metastatic carcinoma of the spine. Spine 10(1):19–20, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Schultz, A., G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Joint Surg. Am. 64(5):713–720, 1982.PubMedGoogle Scholar
  33. 33.
    Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J. Biomech. 19(4):331–350, 1986.PubMedCrossRefGoogle Scholar
  34. 34.
    Silva, M. J., J. A. Hipp, D. P. McGowan, T. Takenchi, and W. C. Hayes. Strength reductions of throracic vertebra in the presence of transcortical osseous defects: Effect of defect location, pedicle disruption, and defect size. Eur. Spine J. 2:118–125, 1993.CrossRefPubMedGoogle Scholar
  35. 35.
    Silva, M. J., T. M. Keaveny, and W. C. Hayes. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Simon, B. R., J. S. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Skipor, A. F., J. A. A. Miller, D. A. Spencer, and A. B. Schultz. Stiffness properties and geometry of lumbar spine posterior elements. J. Biomech. 18(11):821–830, 1985.PubMedCrossRefGoogle Scholar
  38. 38.
    Takeuchi, T., K. Abumi, Y. Shono, I. Oda, and K. Kaneda. Biomechanical role of the interverteibral disc and costovertebral joint in stability of the thoracic spine. Spine 24(14):1414–1420, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Taneichi, H., K. Kaneda, N. Takeda, K. Abumi, and S. Satoh. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 22(3):239–245, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Tawackoli, W., R. Marco, and M. A. K. Liebschner. The effect of compressive axial preload on the flexibility of the thoracic spine. Spine 29(9):988–993, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Tencer, A. F., A. M. Ahmed, and D. L. Burke. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104(3):193–201, 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Tschirhart, C. E., A. Nagpurkar, and C. M. Whyne. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 37(5):653–660, 2004.PubMedCrossRefGoogle Scholar
  43. 43.
    Whealan, K. M., S. D. Kwak, J. R. Tedrow, K. Inoue, and B. D. Snyder. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J. Bone Joint Surg. Am. 82(9):1240–1251, 2000.PubMedGoogle Scholar
  44. 44.
    White, A. A., and M. M. Panjabi. Clinical Biomechanics of the Spine 2nd ed. Philadelphia:JB Lippincott Company, 1992.Google Scholar
  45. 45.
    Whyne, C. M. Development of guidelines for the prophylactic treatment of metastatically involved vertebral bodies. Doctoral thesis, University of California, Berkley, 1999.Google Scholar
  46. 46.
    Whyne, C. M., S. S. Hu, and J. C. Lotz. Parametric finite element analysis of vertebral bodies affected by tumors. J. Biomech. 34(10):1317–1324, 2001.PubMedCrossRefGoogle Scholar
  47. 47.
    Whyne, C. M., S. S. Hu, and J. C. Lotz. Burst fracture in the metastatically involved spine: Development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine 28(7):652–660, 2003.PubMedCrossRefGoogle Scholar
  48. 48.
    Whyne, C. M., S. S. Hu, K. L. Workman, and J. C. Lotz. Biphasic material properties of lytic bone metastases. Ann. Biomed. Eng. 28(9):1154–1158, 2000.PubMedCrossRefGoogle Scholar
  49. 49.
    Wilke, H., A. Rohlmann, S. Neller, M. Schulthei, G. Bergmann, F. Graichen, and L. E. Claes. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load component sin an internal fixator. Spine 26(6):636–642, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilke, H., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data—Data set for the validation of models. Clin. Biomech. 16(S1):111–126, 2001.CrossRefGoogle Scholar
  51. 51.
    Windhagen, H. J., J. A. Hipp, M. J. Silva, S. J. Lipson, and W. C. Hayes. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin. Orthop. Relat. Res. 344:313–319, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Wong, D. A., V. L. Fornasier, and I. MacNab. Spinal metastases: The obvious, the occult, and the impostors. Spine 15(1):1–4, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • Craig E. Tschirhart
    • 1
    • 3
  • Joel A. Finkelstein
    • 1
    • 2
  • Cari M. Whyne
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Orthopaedic Biomechanics Laboratory, Sunnybrook and Women's College Health Sciences CentreUniversity of TorontoTorontoCanada
  2. 2.Department of SurgeryUniversity of TorontoTorontoCanada
  3. 3.Institute of Biomaterials and Biomedical Engineering and Institute of Medical SciencesTorontoCanada
  4. 4.Orthopaedic Biomechanics Laboratory UB19Sunnybrook and Women's College Health Sciences CentreTorontoCanada

Personalised recommendations