Annals of Biomedical Engineering

, Volume 34, Issue 1, pp 59–74 | Cite as

Nanotechnology for Cell–Substrate Interactions

  • Nathan J. Sniadecki
  • Ravi A. Desai
  • Sami Alom Ruiz
  • Christopher S. ChenEmail author


In the pursuit to understand the interaction between cells and their underlying substrates, the life sciences are beginning to incorporate micro- and nanotechnology-based tools to probe and measure cells. The development of these tools portends endless possibilities for new insights into the fundamental relationships between cells and their surrounding microenvironment that underlie the physiology of human tissue. Here, we review techniques and tools that have been used to study how a cell responds to the physical factors in its environment. We also discuss unanswered questions that could be addressed by these approaches to better elucidate the molecular processes and mechanical forces that dominate the interactions between cells and their physical scaffolds.


Cell mechanics Cell shape Extracellular Matrix Focal Adhesions Integrins Mechanotransduction Micropatterning Nanotopology Self-Assembled Monolayers (SAMs) Traction Forces 



This work was supported in part by the National Institutes of Health (grants EB00262 and HL073305), the Department of Defense Multidisciplinary University Research Initiative, and DARPA. NS was supported by the National Institutes of Health Ruth Kirschtein National Research Service Award Postdoctoral Fellowship, and RD acknowledges support from the National Science Foundation Graduate Research Fellowship Program.


  1. 1.
    Abercrombie, M., J. E. Heaysman, and S. M. Pegrum. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp. Cell Res. 67:359–367, 1971.CrossRefPubMedGoogle Scholar
  2. 2.
    Abrams, G. A., S. L. Goodman, P. F. Nealey, M. Franco, and C. J. Murphy. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299:39–46, 2000.PubMedGoogle Scholar
  3. 3.
    Abrams, G. A., C. J. Murphy, Z. Y. Wang, P. F. Nealey, and D. E. Bjorling. Ultrastructural basement membrane topography of the bladder epithelium. Urol. Res. 31:341–346, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. New York, NY: Garland Science, 2002, 1616 pp.Google Scholar
  5. 5.
    Alenghat, F. J., B. Fabry, K. Y. Tsai, W. H. Goldmann, and D. E. Ingber. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem. Biophys. Res. Commun. 277:93–99, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Alenghat, F. J., and D. E. Ingber. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE, 2002:PE6, 2002.Google Scholar
  7. 7.
    Ashkin, A., and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520, 1987.PubMedGoogle Scholar
  8. 8.
    Bain, C. D., J. Evall, and G. M. Whitesides. Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group, and solvent. J. Am. Chem. Soc. 111:7155–7164, 1989.CrossRefGoogle Scholar
  9. 9.
    Bain, C. D., and G. M. Whitesides. Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold. J. Am. Chem. Soc. 110:3665–3666, 1988.CrossRefGoogle Scholar
  10. 10.
    Bain, C. D., and G. M. Whitesides. Formation of monolayers by the coadsoption of thiols on gold: Variation in the length of the alkyl chain. J. Am. Chem. Soc. 111:7164–7175, 1989.CrossRefGoogle Scholar
  11. 11.
    Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.CrossRefPubMedGoogle Scholar
  12. 12.
    Balss, K. M., B. D. Coleman, C. H. Lansford, R. T. Haasch, and P. W. Bohn. Active spatiotemporal control of electrochemical reactions by coupling to in-plane potential gradients. J. Phys. Chem. 105:8970–8978, 2001.Google Scholar
  13. 13.
    Beningo, K. A., M. Dembo, I. Kaverina, J. V. Small, and Y. L. Wang. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153:881–888, 2001.CrossRefPubMedGoogle Scholar
  14. 14.
    Beningo, K. A., M. Dembo, and Y. L. Wang. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl. Acad. Sci. USA 101:18024–18029, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    Bernard, A., E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck. Printing patterns of proteins. Langmuir 14:2225–2229, 1998.CrossRefGoogle Scholar
  16. 16.
    Brock, A., E. Chang, C. C. Ho, P. LeDuc, X. Jiang, G. M. Whitesides, and D. E. Ingber. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19:1611–1617, 2003.CrossRefPubMedGoogle Scholar
  17. 17.
    Burns, M. M., J. M. Fournier, and J. A. Golovchenko. Optical matter—Crystallization and binding in intense optical-fields. Science 249:749–754, 1990.PubMedGoogle Scholar
  18. 18.
    Burridge, K., and M. Chrzanowska-Wodnicka. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12:463–518, 1996.CrossRefPubMedGoogle Scholar
  19. 19.
    Burton, K., J. H. Park, and D. L. Taylor. Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10:3745–3769, 1999.PubMedGoogle Scholar
  20. 20.
    Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.CrossRefPubMedGoogle Scholar
  21. 21.
    Carter, S. B. Haptotaxis and the mechanism of cell motility. Nature 213:256–260, 1967.PubMedGoogle Scholar
  22. 22.
    Charras, G. T., and M. A. Horton. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82:2970–2981, 2002.PubMedGoogle Scholar
  23. 23.
    Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen, J., B. Fabry, E. L. Schiffrin, and N. Wang. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280:C1475–C1484, 2001.PubMedGoogle Scholar
  25. 25.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, C. S., J. Tan, and J. Tien. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6:275–302, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Chicurel, M. E., R. H. Singer, C. J. Meyer, and D. E. Ingber. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392:730–733, 1998.CrossRefPubMedGoogle Scholar
  28. 28.
    Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48, 1997.CrossRefPubMedGoogle Scholar
  29. 29.
    Chrzanowska-Wodnicka, M., and K. Burridge. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–1415, 1996.CrossRefPubMedGoogle Scholar
  30. 30.
    Coussen, F., D. Choquet, M. P. Sheetz, and H. P. Erickson. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J. Cell Sci. 115:2581–2590, 2002.PubMedGoogle Scholar
  31. 31.
    Curtis, A. S. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20:199–215, 1964.CrossRefPubMedGoogle Scholar
  32. 32.
    Curtis, A. S., and M. Varde. Control of cell behavior: Topological factors. J. Natl. Cancer Inst. 33:15–26, 1964.PubMedGoogle Scholar
  33. 33.
    Curtis, A. S., C. D. Wilkinson, J. Crossan, C. Broadley, H. Darmani, K. K. Johal, H. Jorgensen, and W. Monaghan. An in vivo microfabricated scaffold for tendon repair. Eur. Cell Mater. 9:50–57, 2005.PubMedGoogle Scholar
  34. 34.
    Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. Curtis. Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur. Cell Mater. 9:1–8, 2005.PubMedGoogle Scholar
  35. 35.
    Dalby, M. J., S. J. Yarwood, M. O. Riehle, H. J. Johnstone, S. Affrossman, and A. S. Curtis. Increasing fibroblast response to materials using nanotopography: Morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276:1–9, 2002.CrossRefPubMedGoogle Scholar
  36. 36.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.PubMedGoogle Scholar
  37. 37.
    Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.PubMedGoogle Scholar
  38. 38.
    Dembo, M., T. Oliver, A. Ishihara, and K. Jacobson. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70:2008–2022, 1996.PubMedGoogle Scholar
  39. 39.
    Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.PubMedGoogle Scholar
  40. 40.
    Dertinger, S. K., D. T. Chiu, N. L. Jeon, and G. M. Whitesides. Generation of gradients having complex shapes using microfluidics networks. Anal. Chem. 73:1240–1246, 2001.CrossRefGoogle Scholar
  41. 41.
    Dertinger, S. K., X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA 99:12542–12547, 2002.CrossRefPubMedGoogle Scholar
  42. 42.
    Dike, L. E., C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides, and D. E. Ingber. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev. Biol. Anim. 35:441–448, 1999.PubMedGoogle Scholar
  43. 43.
    Doornaert, B., V. Leblond, E. Planus, S. Galiacy, V. M. Laurent, G. Gras, D. Isabey, and C. Lafuma. Time course of actin cytoskeleton stiffness and matrix adhesion molecules in human bronchial epithelial cell cultures. Exp. Cell Res. 287:199–208, 2003.CrossRefPubMedGoogle Scholar
  44. 44.
    du Roure, O., A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 102:2390–2395, 2005.CrossRefPubMedGoogle Scholar
  45. 45.
    Elias, K. L., R. L. Price, and T. J. Webster. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287, 2002.CrossRefPubMedGoogle Scholar
  46. 46.
    Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102, 2001.CrossRefPubMedGoogle Scholar
  47. 47.
    Feynman, R. P. There's plenty of room at the bottom. American Physical Society. Pasadena, CA: California Institute of Technology, 1959.Google Scholar
  48. 48.
    Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature 368:113–119, 1994.CrossRefPubMedGoogle Scholar
  49. 49.
    Flemming, R. G., C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20:573–588, 1999.CrossRefPubMedGoogle Scholar
  50. 50.
    Foley, J. D., E. W. Grunwald, P. F. Nealey, and C. J. Murphy. Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials 26:3639–3644, 2005.CrossRefPubMedGoogle Scholar
  51. 51.
    Folkman, J., and A. Moscona. Role of cell shape in growth control. Nature 273:345–349, 1978.CrossRefPubMedGoogle Scholar
  52. 52.
    Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA 94:9114–9118, 1997.CrossRefPubMedGoogle Scholar
  53. 53.
    Galbraith, C. G., and M. P. Sheetz. Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10:566–571, 1998.CrossRefPubMedGoogle Scholar
  54. 54.
    Galbraith, C. G., and M. P. Sheetz. Keratocytes pull with similar forces on their dorsal and ventral surfaces. J. Cell Biol. 147:1313–1324, 1999.CrossRefPubMedGoogle Scholar
  55. 55.
    Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159:695–705, 2002.CrossRefPubMedGoogle Scholar
  56. 56.
    Gaudet, C., W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, and J. Y. Wong. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85:3329–3335, 2003.PubMedGoogle Scholar
  57. 57.
    Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2:793–805, 2001.CrossRefPubMedGoogle Scholar
  58. 58.
    Giannone, G., G. Jiang, D. H. Sutton, D. R. Critchley, and M. P. Sheetz. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163:409–419, 2003.CrossRefPubMedGoogle Scholar
  59. 59.
    Ginger, D. S., H. Zhang, and C. A. Mirkin. The evolution of dip-pen nanolithography. Angew Chem. Int. Ed. Engl. 43:30–45, 2004.CrossRefPubMedGoogle Scholar
  60. 60.
    Harris, A. Behavior of cultured cells on substrata of variable adhesiveness. Exp. Cell Res. 77:285–297, 1973.CrossRefPubMedGoogle Scholar
  61. 61.
    Harris, A. K., Jr. Tissue culture cells on deformable substrata: Biomechanical implications. J. Biomech. Eng. 106:19–24, 1984.PubMedGoogle Scholar
  62. 62.
    Harris, A. K., P. Wild, and D. Stopak. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science 208:177–179, 1980.PubMedGoogle Scholar
  63. 63.
    Helfman, D. M., E. T. Levy, C. Berthier, M. Shtutman, D. Riveline, I. Grosheva, A. Lachish-Zalait, M. Elbaum, and A. D. Bershadsky. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10:3097–3112, 1999.PubMedGoogle Scholar
  64. 64.
    Hu, S., J. Chen, B. Fabry, Y. Numaguchi, A. Gouldstone, D. E. Ingber, J. J. Fredberg, J. P. Butler, and N. Wang. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol. Cell Physiol. 285:C1082–C1090, 2003.PubMedGoogle Scholar
  65. 65.
    Hu, S., L. Eberhard, J. Chen, J. C. Love, J. P. Butler, J. J. Fredberg, G. M. Whitesides, and N. Wang. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. Cell Physiol. 287:C1184–C1191, 2004.CrossRefPubMedGoogle Scholar
  66. 66.
    Hua, F., Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 4:2467–2471, 2004.CrossRefGoogle Scholar
  67. 67.
    Huang, S., C. S. Chen, and D. E. Ingber. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9:3179–3193, 1998.PubMedGoogle Scholar
  68. 68.
    Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577, 2003.CrossRefPubMedGoogle Scholar
  69. 69.
    Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J.Cell Sci. 116:1157–1173, 2003.CrossRefPubMedGoogle Scholar
  70. 70.
    Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408, 2003.CrossRefPubMedGoogle Scholar
  71. 71.
    James, C. D., R. C. Davis, L. Kam, H. G. Craighead, M. Isaacson, J. N. Turner, and W. Shain. Patterned protein layers on solid substrates by thin stamp microcontact printing. Langmuir 14:741–744, 1998.CrossRefGoogle Scholar
  72. 72.
    Jeon, N. L., H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotech. 20:826–830, 2002.Google Scholar
  73. 73.
    Jiang, X., D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102:975–978, 2005.CrossRefPubMedGoogle Scholar
  74. 74.
    Jiang, X., R. Ferrigno, M. Mrksich, and G. M. Whitesides. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125:2366–2367, 2003.CrossRefPubMedGoogle Scholar
  75. 75.
    Jiang, G. Y., G. Giannone, D. R. Critchley, E. Fukumoto, and M. P. Sheetz. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337, 2003.CrossRefPubMedGoogle Scholar
  76. 76.
    Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. USA 102:4300–4305, 2005.CrossRefPubMedGoogle Scholar
  77. 77.
    Laurent, V. M., S. Kasas, A. Yersin, T. E. Schaffer, S. Catsicas, G. Dietler, A. B. Verkhovsky, and J. J. Meister. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophys. J. 89:667–675, 2005.CrossRefPubMedGoogle Scholar
  78. 78.
    Lee, G. M., and R. F. Loeser. Cell surface receptors transmit sufficient force to bend collagen fibrils. Exp. Cell Res. 248:294–305, 1999.CrossRefPubMedGoogle Scholar
  79. 79.
    Lee, J., M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127:1957–1964, 1994.CrossRefPubMedGoogle Scholar
  80. 80.
    Lee, K. B., S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705, 2002.CrossRefPubMedGoogle Scholar
  81. 81.
    Lehnert, D., B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer. Cell behaviour on micropatterned substrata: Limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117:41–52, 2004.CrossRefPubMedGoogle Scholar
  82. 82.
    Leung, D. Y., S. Glagov, and M. B. Mathews. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477, 1976.PubMedGoogle Scholar
  83. 83.
    Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys. J. 84:1252–1262, 2003.PubMedGoogle Scholar
  84. 84.
    Liedberg, B., and P. Tengvall. Molecular gradients of omega-substituted alkanethiols on gold: Preparation and characterization. Langmuir 11:3821–3827, 1995.CrossRefGoogle Scholar
  85. 85.
    Lin, F., C. M. Nguyen, S. J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Ann. Biomed. Eng. 33:475–482, 2005.CrossRefPubMedGoogle Scholar
  86. 86.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.PubMedGoogle Scholar
  87. 87.
    Mack, P. J., M. R. Kaazempur-Mofrad, H. Karcher, R. T. Lee, and R. D. Kamm. Force-induced focal adhesion translocation: Effects of force amplitude and frequency. Am. J. Physiol. Cell Physiol. 287:C954–C962, 2004.CrossRefPubMedGoogle Scholar
  88. 88.
    Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94:849–854, 1997.CrossRefPubMedGoogle Scholar
  89. 89.
    Matthews, B. D., D. R. Overby, F. J. Alenghat, J. Karavitis, Y. Numaguchi, P. G. Allen, and D. E. Ingber. Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313:758–764, 2004.CrossRefPubMedGoogle Scholar
  90. 90.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  91. 91.
    Meshel, A. S., Q. Wei, R. S. Adelstein, and M. P. Sheetz. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 7:157–164, 2005.CrossRefPubMedGoogle Scholar
  92. 92.
    Meyer, C. J., F. J. Alenghat, P. Rim, J. H. Fong, B. Fabry, and D. E. Ingber. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat. Cell Biol. 2:666–668, 2000.CrossRefPubMedGoogle Scholar
  93. 93.
    Miller, D. C., K. M. Haberstroh, and T. J. Webster. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J. Biomed. Mater. Res. A 73:476–484, 2005.PubMedGoogle Scholar
  94. 94.
    Miller, D. C., A. Thapa, K. M. Haberstroh, and T. J. Webster. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61, 2004.CrossRefPubMedGoogle Scholar
  95. 95.
    Morgenthaler, S., S. Lee, S. Zurcher, and N. D. Spencer. A simple, reproducible approach to the preparation of surface-chemical gradients. Langmuir 19:10459–10462, 2003.CrossRefGoogle Scholar
  96. 96.
    Mrksich, M., L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235:305–313, 1997.CrossRefPubMedGoogle Scholar
  97. 97.
    Mrksich, M., and G. M. Whitesides. Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors? Trends Biotech. 13:228–235, 1995.CrossRefGoogle Scholar
  98. 98.
    Munevar, S., Y. Wang, and M. Dembo. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80:1744–1757, 2001.PubMedGoogle Scholar
  99. 99.
    Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319:433–447, 2002.CrossRefPubMedGoogle Scholar
  100. 100.
    Parker, K. K., A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, N. A. Geisse, J. C. Adams, G. M. Whitesides, and D. E. Ingber. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. Faseb. J. 16:1195–1204, 2002.CrossRefPubMedGoogle Scholar
  101. 101.
    Pelham, R. J., Jr., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.CrossRefPubMedGoogle Scholar
  102. 102.
    Perkins, T. T., S. R. Quake, D. E. Smith, and S. Chu. Relaxation of a single DNA molecule observed by optical microscopy. Science 264:822–826, 1994.PubMedGoogle Scholar
  103. 103.
    Piner, R. D., J. Zhu, F. Xu, S. Hong, and C. A. Mirkin. “Dip-Pen” nanolithography. Science 283:661–663, 1999.CrossRefPubMedGoogle Scholar
  104. 104.
    Plummer, S. T., Q. Wang, and P. W. Bohn. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 19:7528–7536, 2003.CrossRefGoogle Scholar
  105. 105.
    Prime, K. L., and G. M. Whitesides. Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167, 1991.PubMedGoogle Scholar
  106. 106.
    Prime, K. L., and G. M. Whitesides. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system usings self-assembled monolayers. J. Am. Chem. Soc. 115:10714–10721, 1993.CrossRefGoogle Scholar
  107. 107.
    Puig-de-Morales, M., E. Millet, B. Fabry, D. Navajas, N. Wang, J. P. Butler, and J. J. Fredberg. Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am. J. Physiol. Cell Physiol. 287:C643–C654, 2004.CrossRefPubMedGoogle Scholar
  108. 108.
    Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.CrossRefPubMedGoogle Scholar
  109. 109.
    Rajagopalan, P., W. A. Marganski, X. Q. Brown, and J. Y. Wong. Direct comparison of the spread area, contractility, and migration of balb/c 3T3 fibroblasts adhered to fibronectin- and RGD-modified substrata. Biophys. J. 87:2818–2827, 2004.CrossRefPubMedGoogle Scholar
  110. 110.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19:1573–1579, 2003.CrossRefGoogle Scholar
  111. 111.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.CrossRefPubMedGoogle Scholar
  112. 112.
    Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1186, 2001.CrossRefPubMedGoogle Scholar
  113. 113.
    Sastry, S. K., and K. Burridge. Focal adhesions: A nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261:25–36, 2000.CrossRefPubMedGoogle Scholar
  114. 114.
    Schindler, M., I. Ahmed, J. Kamal, A. Nur-E-Kamal, T. H. Grafe, H. Young Chung, and S. Meiners. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26:5624–5631, 2005.CrossRefPubMedGoogle Scholar
  115. 115.
    Shirinsky, V. P., A. S. Antonov, K. G. Birukov, A. V. Sobolevsky, Y. A. Romanov, N. V. Kabaeva, G. N. Antonova, and V. N. Smirnov. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109:331–339, 1989.CrossRefPubMedGoogle Scholar
  116. 116.
    Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber. Engineering cell shape and function. Science 264:696–698, 1994.PubMedGoogle Scholar
  117. 117.
    Smith, J. T., J. K. Tomfohr, M. C. Wells, T. P. Beebe, Jr., T. B. Kepler, and W. M. Reichert. Measurement of cell migration on surface-bound fibronectin gradients. Langmuir 20:8279–8286, 2004.CrossRefPubMedGoogle Scholar
  118. 118.
    Stopak, D., N. K. Wessells, and A. K. Harris. Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc. Natl. Acad. Sci. USA 82:2804–2808, 1985.PubMedGoogle Scholar
  119. 119.
    Suki, B., S. Ito, D. Stamenovic, K. R. Lutchen, and E. P. Ingenito. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98:1892–1899, 2005.CrossRefPubMedGoogle Scholar
  120. 120.
    Tan, J. L., W. Liu, C. M. Nelson, S. Raghavan, and C. S. Chen. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10:865–872, 2004.CrossRefPubMedGoogle Scholar
  121. 121.
    Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100:1484–1489, 2003.CrossRefPubMedGoogle Scholar
  122. 122.
    Teixeira, A. I., G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116:1881–1892, 2003.CrossRefPubMedGoogle Scholar
  123. 123.
    Teixeira, A. I., P. F. Nealey, and C. J. Murphy. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. A 71:3153–3164, 2004.Google Scholar
  124. 124.
    Terray, A., J. Oakey, and D. W. M. Marr. Microfluidic control using colloidal devices. Science 296:1841–1844, 2002.CrossRefPubMedGoogle Scholar
  125. 125.
    Tolic-Norrelykke, I. M., and N. Wang. Traction in smooth muscle cells varies with cell spreading. J. Biomech. 38:1405–1412, 2005.CrossRefPubMedGoogle Scholar
  126. 126.
    Upadhyaya, A., and M. P. Sheetz. Tension in tubulovesicular networks of Golgi and endoplasmic reticulum membranes. Biophys. J. 86:2923–2928, 2004.PubMedGoogle Scholar
  127. 127.
    Walpita, D., and E. Hay. Studying actin-dependent processes in tissue culture. Nat. Rev. Mol. Cell Biol. 3:137–141, 2002.CrossRefPubMedGoogle Scholar
  128. 128.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.PubMedMathSciNetGoogle Scholar
  129. 129.
    Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl. Acad. Sci. USA 98:11295–11300, 2001.CrossRefPubMedGoogle Scholar
  130. 130.
    Wang, N., E. Ostuni, G. M. Whitesides, and D. E. Ingber. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52:97–106, 2002.CrossRefPubMedGoogle Scholar
  131. 131.
    Xia, Y., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.CrossRefGoogle Scholar
  132. 132.
    Yim, E. K., R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, and K. W. Leong. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413, 2005.CrossRefPubMedGoogle Scholar
  133. 133.
    Yousaf, M. N., B. T. Houseman, and M. Mrksich. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 98:5992–5996, 2001.CrossRefPubMedGoogle Scholar
  134. 134.
    Zamir, E., and B. Geiger. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583–3590, 2001.PubMedGoogle Scholar
  135. 135.
    Zlatanova, J., S. M. Lindsay, and S. H. Leuba. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74:37–61, 2000.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Nathan J. Sniadecki
    • 1
  • Ravi A. Desai
    • 1
  • Sami Alom Ruiz
    • 1
    • 2
  • Christopher S. Chen
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations