Annals of Biomedical Engineering

, Volume 34, Issue 1, pp 89–101 | Cite as

Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds

  • James J. NormanEmail author
  • Tejal A. Desai


Observations of how controlling the microenvironment of cell cultures can lead to changes in a variety of parameters has lead investigators to begin studying how the nanoenvironment of a culture can affects cells. Cells have many structures at the nanoscale such as filipodia and cytoskeletal and membrane proteins that interact with the environment surrounding them. By using techniques that can control the nanoenvironment presented to a cell, investigators are beginning to be able to mimic the nanoscale topographical features presented to cells by extracellular matrix proteins such as collagen, which has precise and repeating nanotopography. The belief is that these nanoscale surface features are important to creating more natural cell growth and function. A number of techniques are currently being used to create nanoscale topographies for cell scaffolding. These techniques fall into two main categories: techniques that create ordered topographies and those that create unordered topographies. Electron Beam lithography and photolithograpghy are two standard techniques for creating ordered features. Polymer demixing, phase separation, colloidal lithography and chemical etching are most typically used for creating unordered surface patterns. This review will give an overview of these techniques and cite observations from experiments carried out using them.


Electron beam lithography Photolithography Polymer demixing Colloidal lithography Phase separation Electrospinning Chemical etching Nanotechnology Nanoscale features 



The authors would like to acknowledge the financial support of National Heart, Lung, and Blood Institute Grant NIH (64956) and Johnson & Johnson.


  1. 1.
    Abrams, G. A., S. L. Goodman, P. F. Nealey, M. Franco, and C. J. Murphy. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299:39–46, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Affrosman, S., G. Henn, S. A. O’Niell, R. A. Pethrick, and M. Stamm. Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends. Macromolecules 29:5010–5016, 1996.CrossRefGoogle Scholar
  3. 3.
    Affrossman, S., S. A. O’Niell, and M. Stamm. Topography and surface composition of thin films of blends of polystyrene with bromiated polystyrenes: Effects of varying degrees of bomination and annealing. Macromolecules 31:6280–6288, 1998.CrossRefGoogle Scholar
  4. 4.
    Affrossman, S., and M. Stamm. The effect of molecular weight on the topography of thin films of blends of poly(4-bromostyrene) and polystyrene. Colloid Polym. Sci. 278:888–893, 2000.CrossRefGoogle Scholar
  5. 5.
    Andersson, A. S., J. Brink, U. Lidberg, and D. S. Sutherland. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans. Nanobiosc. 2:49–57, 2003.CrossRefGoogle Scholar
  6. 6.
    Bhattarai, S. J., N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 25:2595–2602, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Buttiglieri, S., D. Pasqui, M. Migliori, H. Johnstone, S. Affrossman, L. Sereni, M. L. Wratten, R. Barbucci, C. Tetta, and G. Camussi. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 24:2731–2738, 2003.CrossRefPubMedGoogle Scholar
  8. 8.
    Curtis, A. S. G., B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys. Chem. 95:275–283, 2001.CrossRefGoogle Scholar
  9. 9.
    Dalby, M. J., C. C. Berry, M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295:387–394, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Dalby, M. J., S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis. Fibroblast reaction to island topography: Changes in cytoskeleton and morphology with time. Biomaterials 24:927–935, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Dalby, M. J., N. Gadegaard, M. O. Riehle, C. D. W. Wilkinson, and A. S. G. Curtis. Investigating filipodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36:2005–2015, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Dalby, M. J., D. Giannaras, M. O. Riehle, N. Gadegaard, S. Affrossman, and A. S. G. Curtis. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topographies. Biomaterials 25:77–83, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Dalby, M. J., M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23:2945–2954, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Dalby, M. J., M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis. Investigating the limits of filopodial sensing: A brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell. Biol. Int. 28:229–236, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25:5415–5422, 2004.CrossRefPubMedGoogle Scholar
  16. 16.
    Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Use of nanotopography to study mechanotransductoin in fibroblasts—methods and perspectives. Eur. J. Cell. Biol. 83:159–169, 2004.CrossRefPubMedGoogle Scholar
  17. 17.
    Dalby, M. J., S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis. Increasing fibroblast response to materials using nanotopography: Morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276:1–9, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Denis, F. A., P. Hanarp, D. S. Suterland, and Y. F. Dufrene. Nanoscale chemical patterns fabricated by using colloidal lithography and self-assembled monolayers. Langmuir 20:9335–9339, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Desai, T. A.. Micro- and nanoscale structures for tissue engineering constructs. Med. Eng. Phys. 22:595–606, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Desai, T. A., D. J. Hansford, L. Kulinski, A. H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari. Nanopore technology for biomedical applications. Biomed. Microdevices 2:11–40, 1999.CrossRefGoogle Scholar
  21. 21.
    Desai, T. A., T. West, M. Cohen, T. Boiarski, and A. Rampersaud. Nanoporous microsystems for islet cell transplantation. Adv. Drug Deliv. Rev. 56:1661–1673, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Deutsch, J., D. Motlagh, B. Russell, and T. A. Desai. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. Biomed. Mater. Res. 53:267–275, 2000.CrossRefGoogle Scholar
  23. 23.
    Dunn, F. A., and J. P. Heath. A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101:1–14, 1976.CrossRefPubMedGoogle Scholar
  24. 24.
    Fan, Y. W., F. Z. Cui, L. N. Chen, Y. Zhia, Q. Y. Xu, and I.-S. Lee. Adhesion of neural cells on silicon wafer with nano-topographic surface. Appl. Surf. Sci. 187:313–318, 2002.CrossRefGoogle Scholar
  25. 25.
    Fan, Y. W., F. Z. Cui, S. P. Hou, Q. Y. Xu, L. N. Chen, and I.-S. Lee. Culture of neural cells on silicon wafers with nano-scale surface topograph. J. Neurosci. Methods 120:17–23, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Fields, G. B., J. L. Lauer, Y. Dori, P. Forns, Y. C. Yu, and M. Tirrell. Protein-like molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151, 1998.CrossRefPubMedGoogle Scholar
  27. 27.
    Folch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J. Biomech. Eng. 121:28–34, 1999.PubMedGoogle Scholar
  28. 28.
    Frenot, A., and I. S. Chronakis. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8:64–75, 2003.CrossRefGoogle Scholar
  29. 29.
    Fujihara, K., M. Kotaki, and S. Ramakrishna. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147, 2005.CrossRefPubMedGoogle Scholar
  30. 30.
    Gadegaard, N., S. Thomas, D. S. Macntyre, K. Mcghee, J. Gallagher, B. Casey, and C. D. W. Wilkinson. Arrays of nano-dots for cellular engineering. Microelectron. Eng. 67–68:162–168, 2003.CrossRefGoogle Scholar
  31. 31.
    Griscom, L., P. Degenaar, B. LePioufle, E. Tamiya, and H. Fujita. Techniques for patterning and guidance of primary culture neurons on micro-electrode arrays. Sens. Actuators B Chem. 83:15–21, 2002.CrossRefGoogle Scholar
  32. 32.
    Gustafson, T., and L. Wolpert. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Exp. Cell Res. 253:288–295, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Hanarp, P., D. Sutherland, J. Gold, and B. Kasemo. Nanostructured model biomaterial surfaces prepared by colloidal lithography. Nanostruct. Mater. 12:429–432, 1999.CrossRefGoogle Scholar
  34. 34.
    Hanarp, P., D. Sutherland, J. Gold, and B. Kasemo. Control of nanoparticle film structure for colloidal lithography. Colloids Surf. A Physiochem. Eng. Aspects 214:23–36, 2003.CrossRefGoogle Scholar
  35. 35.
    Hartgerink, J. D., E. Beniash, and S. I. Stupp. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 99:5133–5138, 2002.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang, L., R. P. Apkarian, and E. L. Chaikof. High-resolution analysis of engineered type I collagen nanfibers by electron microscopy. Scanning 23(6):372–375, 2001.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang, Z. M., Y. Z. Zhang, M. Kotaki, and S. Ramakrishna. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Technol. 63:2223–2253, 2003.CrossRefGoogle Scholar
  38. 38.
    Jin, H. J., J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25:1039–1047, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Kenawy, E. R., J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, and G. E. Wnek. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 24:907–913, 2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Klehn, B., S. Skaberna, and U. Kunze. Wet-chemical nanoscale patterning of GaAs surfaces using atomic force microscope lithography. Superlatt. Microstruct. 25:473–476, 1999.CrossRefGoogle Scholar
  41. 41.
    Leary Swan, E. E., K. C. Popat, and T. A. Desai. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26:1969–1976, 2005.CrossRefPubMedGoogle Scholar
  42. 42.
    Leary Swan, E. E., K. C. Popat, C. A. Grimes, and T. A. Desai. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res. 72A(3):288–295, 2005.CrossRefGoogle Scholar
  43. 43.
    Leoni, L., and T. Desai. Micromachined biocapsules for cell based sensing and delivery. Adv. Drug Deliv. Rev. 56:211–229, 2004.CrossRefPubMedGoogle Scholar
  44. 44.
    MacPhee, C. E., and D. N. Woolfoson. Engineered and designed peoptide-based fibrous biomaterials. Curr. Opin. Solid State Mater. Sci. 8:141–149, 2004.CrossRefGoogle Scholar
  45. 45.
    Madou, M. J. Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. Boca Raton: CRC Press LLC, 2002, 723 p.Google Scholar
  46. 46.
    Marsh, G. Moore's law at the extremes. Mater. Today 6:28–33, 2003.CrossRefGoogle Scholar
  47. 47.
    Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238, 2002.CrossRefPubMedGoogle Scholar
  48. 48.
    Min, B. M., G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297, 2004.CrossRefPubMedGoogle Scholar
  49. 49.
    Min, B. M., Y. You, J. M. Kim, S. J. Lee, and W. H. Park. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr. Polym. 57:285–292, 2004.CrossRefGoogle Scholar
  50. 50.
    Moldovan, N. I., and M. Ferrari. Prospects for microtechnology and nanotechnology in bioengineering of replacement microvessels. Arch. Pathol. Lab. Med. 126:320–324, 2002.PubMedGoogle Scholar
  51. 51.
    Moldovan, N. I., P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87:378–384, 2000.PubMedGoogle Scholar
  52. 52.
    Motlagh, D., S. E. Senyo, T. A. Desai, and B. Russell. Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24:2463–2476, 2003.CrossRefPubMedGoogle Scholar
  53. 53.
    Norman, J. J., and T. A. Desai. Control of cellular organization three-dimensions using a microfabricated PDMS-collagen composite tissue scaffold. Tissue Eng 11:378–386, 2005.Google Scholar
  54. 54.
    Pattison, M. A., S. Wurster, T. J. Webster, and K. M. Haberstroh. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500, 2005.Google Scholar
  55. 55.
    Popat, K. C., E. E. Leary Swan, V. Mukhatyar, K. I. Chatvanichkul, G. K. Mor, C. A. Grimes, and T. A. Desai. Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 26(22):4516–4522, 2005.Google Scholar
  56. 56.
    Riehle, M. O., M. J. Dalby, H. Johnstone, A. MacIntosh, and S. Affrossman. Cell behavior of rat calvaria bone cells on surfaces with random nanometric features. Mater. Sci. Eng. C 23:337–340, 2003.CrossRefGoogle Scholar
  57. 57.
    Ruoslahti, E., and M. D. Pierschbacher. Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517–518, 1986CrossRefPubMedGoogle Scholar
  58. 58.
    Sarantopoulou, E., Z. Kollia, K. Kocevar, I. Musevic, S. Kobe, G. Drazic, E. Gogolides, P. Argitis, and A. C. Cefalas. The challenges of 157 nm nanolithography: Surface morphology of silicon-based copolymers. Mater. Sci. Eng. C 23:995–999, 2003CrossRefGoogle Scholar
  59. 59.
    Kidoaki, S., I. K. Kwon, and T. Matsuda. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46, 2005.CrossRefPubMedGoogle Scholar
  60. 60.
    Shields, K. J., M. J. Beckman, G. L. Bowlin, and J. S. Wayne. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 10(9–10):1510–1517, 2004.PubMedGoogle Scholar
  61. 61.
    Shin, M., O. Ishii, T. Sueda, and J. P. Vacanti. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25:3717–3723, 2004.CrossRefPubMedGoogle Scholar
  62. 62.
    Silver, F. H., and D. L. Christiansen. Biomaterials Science and Biocompatibility. New York: Springer-Verlag, 1999.Google Scholar
  63. 63.
    Singhvi, R., G. Stephanopoulos, and D. I. C. Wang. Review: Effects of substratum morphology on cell physiology. Biotechnol. Bioeng. 43:764–771, 1994.CrossRefGoogle Scholar
  64. 64.
    Smith, L. A., and P. X. Ma. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B 39:125–131, 2004.Google Scholar
  65. 65.
    Sung, I. A., D. E. Kim. Nano-scale patterning by mechano-chemical scanning probe lithography. Appl. Surf. Sci. 239:209–221, 2005.CrossRefGoogle Scholar
  66. 66.
    Thapa, A., D. C. Miller, T. J. Webster, K. M. Haberstroh. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24:2915–2926, 2003.CrossRefPubMedGoogle Scholar
  67. 67.
    Tu, R. S., and M. Tirrell. Bottom-up design of biomimetic assemblies. Adv. Drug Deliv. Rev. 56:1537–1563, 2004.CrossRefPubMedGoogle Scholar
  68. 68.
    Vieu, C., F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci.. 164:111–117, 2000.CrossRefGoogle Scholar
  69. 69.
    Wei, G., and P. X. Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757, 2004.CrossRefPubMedGoogle Scholar
  70. 70.
    Wendel, M., B. Irmer, J. Cortes, R. Kaiser, H. Lorenz, J. P. Kotthaus, and A. Lorke. Nanolithography with an atomic force microscope. Superlatt. Microstruct. 20:349–356, 1996.CrossRefGoogle Scholar
  71. 71.
    Wood, M. A., M. Riehle, and C. D. W. Wilkinson. Patterning colloidal nanotopographies. Nanotechnology 13:605–609, 2002.CrossRefGoogle Scholar
  72. 72.
    Xu, C. Y., R. Inai, M. Kotaki, and S. Ramakrishna. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25:877–886, 2004.CrossRefPubMedGoogle Scholar
  73. 73.
    Yang, F., R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, and S. Wang. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900, 2004.CrossRefPubMedGoogle Scholar
  74. 74.
    Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.Google Scholar
  75. 75.
    Yasuhiko, T. Recent progress in tissue engineering. Drug Discov. Today 6:483–487, 2001.CrossRefPubMedGoogle Scholar
  76. 76.
    Zong, X., H. Bien, C. Y. Chung, L. Yin, D. Fang, B. S. Hsiao, B. Chu, and E. Entcheva. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Department of Physiology and Division of BioengineeringUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations