Annals of Biomedical Engineering

, Volume 34, Issue 1, pp 23–38 | Cite as

Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging

  • Daniel L. J. Thorek
  • Antony K. Chen
  • Julie Czupryna
  • Andrew Tsourkas


The field of molecular imaging has recently seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing researchers to monitor not only anatomical changes, but physiological and molecular changes as well. Applications have ranged from detecting inflammatory diseases via the accumulation of non-targeted SPIO in infiltrating macrophages to the specific identification of cell surface markers expressed on tumors. In this article, we attempt to illustrate the broad utility of SPIO in molecular imaging, including some of the recent developments, such as the transformation of SPIO into an activatable probe termed the magnetic relaxation switch.


Molecular imaging Nanoparticles SPIO Magnetic resonance 


  1. 1.
    Antony, A. C. Folate receptors. Annu. Rev. Nutr. 16:501–521, 1996.CrossRefPubMedGoogle Scholar
  2. 2.
    Anzai, Y. Superparamagnetic iron oxide nanoparticles: Nodal metastases and beyond. Top. Magn. Reson. Imaging 15:103–111, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Anzai, Y., C. W. Piccoli, E. K. Outwater, W. Stanford, D. A. Bluemke, P. Nurenberg, S. Saini, K. R. Maravilla, D. E. Feldman, U. P. Schmiedl, J. A. Brunberg, I. R. Francis, S. E. Harms, P. M. Som, and C. M. Tempany. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and efficacy study. Radiology 228:777–788, 2003.PubMedGoogle Scholar
  4. 4.
    Anzai, Y., M. R. Prince, T. L. Chenevert, J. H. Maki, F. Londy, M. London, and S. J. MacLachlan. MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent. J. Magn. Reson. Imaging 7:75–81, 1997.PubMedGoogle Scholar
  5. 5.
    Arbab, A. S., T. Ichikawa, H. Sou, T. Araki, H. Nakajima, K. Ishigame, T. Yoshikawa, and H. Kumagai. Ferumoxides-enhanced double-echo T2-weighted MR imaging in differentiating metastases from nonsolid benign lesions of the liver. Radiology 225:151–158, 2002.PubMedGoogle Scholar
  6. 6.
    Arbab, A. S., G. T. Yocum, L. B. Wilson, A. Parwana, E. K. Jordan, H. Kalish, and J. A. Frank. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol. Imaging 3:24–32, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Ariens, R. A., T. S. Lai, J. W. Weisel, C. S. Greenberg, and P. J. Grant. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Artemov, D., N. Mori, B. Okollie, and Z. M. Bhujwalla. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49:403–408, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Artemov, D., N. Mori, R. Ravi, and Z. M. Bhujwalla. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res. 63:2723–2727, 2003.PubMedGoogle Scholar
  10. 10.
    Ayyub, P., M. Multani, M. Barma, V. R. Palkar, and R. Vijayaraghavan. Size-induced structural phase-transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C Solid State Phys. 21:2229–2245, 1988.CrossRefGoogle Scholar
  11. 11.
    Babes, L., B. Denizot, G. Tanguy, J. J. Le Jeune, and P. Jallet. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci. 212:474–482, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Banati, R. B., J. Gehrmann, P. Schubert, and G. W. Kreutzberg. Cytotoxicity of microglia. Glia 7:111–118, 1993.CrossRefPubMedGoogle Scholar
  13. 13.
    Bee, A., R. Massart, and S. Neveu. Synthesis of very fine maghemite particle. J. Magn. Magn. Mater. 149:6–9, 1995.CrossRefGoogle Scholar
  14. 14.
    Belin, T., N. Guigue-Millot, T. Caillot, D. Aymes, and J. C. Niepce. Influence of grain size, oxygen stoichiometry, and synthesis conditions on the small gamma, Greek-Fe2O3 vacancies ordering and lattice parameters. J. Solid State Chem. 163:459–465, 2002.CrossRefGoogle Scholar
  15. 15.
    Bischoff, J., C. Brasel, B. Kraling, and K. Vranovska. E-selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 4:279–287, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Bos, C., Y. Delmas, A. Desmouliere, A. Solanilla, O. Hauger, C. Grosset, I. Dubus, Z. Ivanovic, J. Rosenbaum, P. Charbord, C. Combe, J. W. Bulte, C. T. Moonen, J. Ripoche, and N. Grenier. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789, 2004.PubMedGoogle Scholar
  17. 17.
    Brooks, R. A. T(2)-shortening by strongly magnetized spheres: A chemical exchange model. Magn. Reson. Med. 47:388–391, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Bruckl, H., M. Panhorst, J. Schotter, P. B. Kamp, and A. Becker. Magnetic particles as markers and carriers of biomolecules. IEE Proc. Nanobiotechnol. 152:41–46, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Bulte, J. W., S. Zhang, P. van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, J. A. Frank. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 96:15256–15261, 1999.CrossRefPubMedGoogle Scholar
  20. 20.
    Carreno, T. G., A. Mifsud, C. J. Serna, and J. M. Palacios. Preparation of homogeneous Zn/Co mixed oxides by spray pyrolysis. Mater. Chem. Phys. 27:287–296, 1991.CrossRefGoogle Scholar
  21. 21.
    Caruso, F., M. Spasova, A. Susha, M. Giersig, and R. A. Caruso. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 13:109–116, 2001.CrossRefGoogle Scholar
  22. 22.
    Caruso, F., A. S. Susha, M. Giersig, and H. Mohwald. Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater. 11:950, 1999.CrossRefGoogle Scholar
  23. 23.
    Chapman, P. T., F. Jamar, E. T. Keelan, A. M. Peters, and D. O. Haskard. Use of a radiolabeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. Arthritis Rheum. 39:1371–1375, 1996.PubMedGoogle Scholar
  24. 24.
    Choi, H., S. R. Choi, R. Zhou, H. F. Kung, and I. W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad. Radiol. 11:996–1004, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    Cornell, R. M., and U. Schertmann. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Weinheim: VCH Publishers, 1996.Google Scholar
  26. 26.
    Corot, C., K. G. Petry, R. Trivedi, A. Saleh, C. Jonkmanns, J. F. Le Bas, E. Blezer, M. Rausch, B. Brochet, P. Foster-Gareau, D. Baleriaux, S. Gaillard, and V. Dousset. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39:619–625, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Daldrup-Link, H. E., M. Rudelius, R. A. Oostendorp, M. Settles, G. Piontek, S. Metz, H. Rosenbrock, U. Keller, U. Heinzmann, E. J. Rummeny, J. Schlegel, and T. M. Link. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767, 2003.PubMedGoogle Scholar
  28. 28.
    Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277:1232–1237, 1997.CrossRefGoogle Scholar
  29. 29.
    Deng, Y., L. Wang, W. Yang, S. Fu, A. Elaissari. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257:69–78, 2003.CrossRefGoogle Scholar
  30. 30.
    Dodd, C. H., H. C. Hsu, W. J. Chu, P. Yang, H. G. Zhang, J. D. Mountz Jr., K. Zinn, J. Forder, L. Josephson, R. Weissleder, J. M. Mountz, and J. D. Mountz. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256:89–105, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Dodd, S. J., M. Williams, J. P. Suhan, D. S. Williams, A. P. Koretsky, and C. Ho. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J. 76:103–109, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Dormer, K., C. Seeney, A. Mamedov, and F. Mondalek. Internalization of nanoparticles in the middle ear epithelium in response to an external magnetic field: Generating a force. Proceedings of Nanotech 2004, 2004.Google Scholar
  33. 33.
    Dousset, V., C. Delalande, L. Ballarino, B. Quesson, D. Seilhan, M. Coussemacq, E. Thiaudiere, B. Brochet, P. Canioni, and J. M. Caille. In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn. Reson. Med. 41:329–333, 1999.CrossRefPubMedGoogle Scholar
  34. 34.
    Edelman, R. R. Contrast-enhanced MR imaging of the heart: Overview of the literature. Radiology 232:653–668, 2004.PubMedGoogle Scholar
  35. 35.
    Elliot, S. R. The Physics and Chemistry of Solids. New York: Wiley, 1998.Google Scholar
  36. 36.
    Emoto, K., N. Toyama-Sorimachi, H. Karasuyama, K. Inoue, and M. Umeda. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232:430–434, 1997.CrossRefPubMedGoogle Scholar
  37. 37.
    Enochs, W. S., G. Harsh, F. Hochberg, and R. Weissleder. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9:228–232, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Fauconnier, N., A. Bee, J. Roger, and J. N. Pons. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J. Mol. Liquids 83:233–242, 1999.CrossRefGoogle Scholar
  40. 40.
    Flacke, S., S. Fischer, M. J. Scott, R. J. Fuhrhop, J. S. Allen, M. McLean, P. Winter, G. A. Sicard, P. J. Gaffney, S. A. Wickline, and G. M. Lanza. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 104:1280–1285, 2001.PubMedGoogle Scholar
  41. 41.
    Fletcher, F., and E. London. Intravenous iron. Br. Med. J. 84, 1954.Google Scholar
  42. 42.
    Foster-Gareau, P., C. Heyn, A. Alejski, and B. K. Rutt. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med. 49:968–971, 2003.CrossRefPubMedGoogle Scholar
  43. 43.
    Frank, J. A., B. R. Miller, A. S. Arbab, H. A. Zywicke, E. K. Jordan, B. K. Lewis, L. H. Bryant Jr., and J. W. Bulte. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487, 2003.PubMedGoogle Scholar
  44. 44.
    Funovics, M. A., B. Kapeller, C. Hoeller, H. S. Su, R. Kunstfeld, S. Puig, and K. Macfelda. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn. Reson. Imaging 22:843–850, 2004.CrossRefPubMedGoogle Scholar
  45. 45.
    Gao, X., L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16:63–72, 2005.CrossRefPubMedGoogle Scholar
  46. 46.
    Gilchrist, R. K., R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor. Selective inductive heating of lymph nodes. Ann. Surg. 146:596–606, 1957.PubMedGoogle Scholar
  47. 47.
    Gillis, P., F. Moiny, and R. A. Brooks. On T(2)-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 47:257–263, 2002.CrossRefPubMedGoogle Scholar
  48. 48.
    Goodarzi, A., Y. Sayoo, M. T. Swihart, and P. N. Prasad. Aqueous ferrofluid of citric acid coated magnetite particles. Mater. Res. Soc. Symp. Proc. 789:129–134, 2004.Google Scholar
  49. 49.
    Grimm, J., J. M. Perez, L. Josephson, and R. Weissleder. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64:639–643, 2004.CrossRefPubMedGoogle Scholar
  50. 50.
    Groman, E. V., K. G. Paul, T. B. Frigo, H. H. Bengele, and J. M. Lewis. Heat stable colloidal iron oxides coated with reduced carbohydrates and carbohdrate derivatives, US Patent 6599498, in US, Advanced Magnetics, Inc., 2003.Google Scholar
  51. 51.
    Gupta, A. Iron infusion into the arterial blood line during haemodialysis: A novel method to remove free iron and reduce oxidative damage. Nephrol. Dial. Transplant 15:1482–1484, 2000.CrossRefPubMedGoogle Scholar
  52. 52.
    Gupta, A. K., and A. S. Curtis. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J. Mater. Sci. Mater. Med. 15:493–496, 2004.CrossRefPubMedGoogle Scholar
  53. 53.
    Gupta, A. K., and S. Wells. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3:66–73, 2004.CrossRefGoogle Scholar
  54. 54.
    Hahn, P. F., D. D. Stark, J. M. Lewis, S. Saini, G. Elizondo, R. Weissleder, C. J. Fretz, and J. T. Ferrucci. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175:695–700, 1990.PubMedGoogle Scholar
  55. 55.
    Harisinghani, M. G., J. Barentsz, P. F. Hahn, W. M. Deserno, S. Tabatabaei, C. H. van de Kaa, J. de la Rosette, and R. Weissleder. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348:2491–2499, 2003.CrossRefPubMedGoogle Scholar
  56. 56.
    He, Y. P., S. Q. Wang, C. R. Li, Y. M. Miao, Z. Y. Wu, and B. S. Zou. Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J. Phys. D Appl. Phys. 38:1342–1350, 2005.CrossRefGoogle Scholar
  57. 57.
    Herschman, H. R. Molecular imaging: Looking at problems, seeing solutions. Science 302:605–608, 2003.CrossRefPubMedGoogle Scholar
  58. 58.
    Hinds, K. A., J. M. Hill, E. M. Shapiro, M. O. Laukkanen, A. C. Silva, C. A. Combs, T. R. Varney, R. S. Balaban, A. P. Koretsky, and C. E. Dunbar. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872, 2003.CrossRefPubMedGoogle Scholar
  59. 59.
    Hochepied, J. F., and M. P. Pileni. Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys. 87:2472–2478, 2000.CrossRefGoogle Scholar
  60. 60.
    Hogemann, D., L. Josephson, R. Weissleder, J. P. Basilion. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug. Chem. 11:941–946, 2000.CrossRefPubMedGoogle Scholar
  61. 61.
    Hundt, W., R. Petsch, T. Helmberger, and M. Reiser. Effect of superparamagnetic iron oxide on bone marrow. Eur. Radiol. 10:1495–1500, 2000.CrossRefPubMedGoogle Scholar
  62. 62.
    Ichikawa, T., D. Hogemann, Y. Saeki, E. Tyminski, K. Terada, R. Weissleder, E. A. Chiocca, and J. P. Basilion. MRI of transgene expression: Correlation to therapeutic gene expression. Neoplasia 4:523–530, 2002.CrossRefPubMedGoogle Scholar
  63. 63.
    Igartua, M., P. Saulnier, B. Heurtault, B. Pech, J. E. Proust, J. L. Pedraz, and J. P. Benoit. Development and characterization of solid lipid nanoparticles loaded with magnetite. Int. J. Pharm. 233:149–157, 2002.CrossRefPubMedGoogle Scholar
  64. 64.
    Jaffer, F. A., and R. Weissleder. Seeing within: Molecular imaging of the cardiovascular system. Circ. Res. 94:433–445, 2004.CrossRefPubMedGoogle Scholar
  65. 65.
    Johansson, L. O., A. Bjornerud, H. K. Ahlstrom, D. L. Ladd, and D. K. Fujii. A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution. J. Magn. Reson. Imaging 13:615–618, 2001.CrossRefPubMedGoogle Scholar
  66. 66.
    Jolivet, J. P. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York: Wiley, 2000.Google Scholar
  67. 67.
    Josephson, L., J. M. Perez, and R. Weissleder. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem. Int. Ed. Engl. 40:3204, 2001.CrossRefGoogle Scholar
  68. 68.
    Josephson, L., C. H. Tung, A. Moore, and R. Weissleder. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10:186–191, 1999.CrossRefPubMedGoogle Scholar
  69. 69.
    Kachra, Z., E. Beaulieu, L. Delbecchi, N. Mousseau, F. Berthelet, R. Moumdjian, R. Del Maestro, and R. Beliveau. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin. Exp. Metastasis 17:555–566, 1999.CrossRefPubMedGoogle Scholar
  70. 70.
    Kang, H. W., L. Josephson, A. Petrovsky, R. Weissleder, and A. Bogdanov Jr.. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13:122–127, 2002.CrossRefPubMedGoogle Scholar
  71. 71.
    Kanno, S., Y. J. Wu, P. C. Lee, S. J. Dodd, M. Williams, B. P. Griffith, and C. Ho. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104:934–938, 2001.PubMedGoogle Scholar
  72. 72.
    Kelly, K. A., J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96:327–336, 2005.CrossRefPubMedGoogle Scholar
  73. 73.
    Kemshead, J. T., and J. Ugelstad. Magnetic separation techniques: Their application to medicine. Mol. Cell. Biochem. 67:11–18, 1985.PubMedGoogle Scholar
  74. 74.
    Kim, D. K., W. Voit, W. Zapka, B. Bjelke, M. Muhammed, and K. V. Rao. Biomedical application of ferrofluids containing magnetite nanoparticles. Mater. Res. Soc. Symp. Proc. 676:y8.32.31.31–36, 2001.Google Scholar
  75. 75.
    Kooi, M. E., V. C. Cappendijk, K. B. Cleutjens, A. G. Kessels, P. J. Kitslaar, M. Borgers, P. M. Frederik, M. J. Daemen, and J. M. van Engelshoven. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458, 2003.CrossRefPubMedGoogle Scholar
  76. 76.
    Kraling, B. M., M. J. Razon, L. M. Boon, D. Zurakowski, C. Seachord, R. P. Darveau, J. B. Mulliken, C. L. Corless, and J. Bischoff. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am. J. Pathol. 148:1181–1191, 1996.PubMedGoogle Scholar
  77. 77.
    Kresse, M., S. Wagner, D. Pfefferer, R. Lawaczeck, V. Elste, and W. Semmler. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med. 40:236–242, 1998.PubMedGoogle Scholar
  78. 78.
    LaConte, L. E., N. Nitin, and G. Bao. Magnetic nanoparticle probes. Mater. Today 8(Suppl. 1):32–38, 2005.CrossRefGoogle Scholar
  79. 79.
    Lee, S.-J., J.-R. Leong, S.-C. Shin, J.-C. Kim, Y.-H. Chang, Y.-M. Chang, and J.-D. Kim. Nanoparticles of magnetic ferric oxides encapsulated with poly(d,l latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J. Magn. Magn. Mater. 272–276:2432–2433, 2004.CrossRefGoogle Scholar
  80. 80.
    Lewin, M., N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, and R. Weissleder. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18:410–414, 2000.CrossRefPubMedGoogle Scholar
  81. 81.
    Li, Z., H. Chen, H. B. Bao, and M. Y. Gao. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16:1391–1393, 2004.CrossRefGoogle Scholar
  82. 82.
    Lind, K., M. Kresse, N. P. Debus, and R. H. Muller. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: Comparison of physicochemical properties and the in vivo behaviour. J. Drug Target 10:221–230, 2002.CrossRefPubMedGoogle Scholar
  83. 83.
    London, E. The molecular formula and proposed structure of the iron-dextran complex, imferon. J. Pharm. Sci. 93:1838, 2004.CrossRefPubMedGoogle Scholar
  84. 84.
    Louie, A. Y., M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18:321–325, 2000.CrossRefPubMedGoogle Scholar
  85. 85.
    Lu, Y., B. T. Mayers, and Y. Xia. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2:183–186, 2002.CrossRefGoogle Scholar
  86. 86.
    Mack, M. G., J. O. Balzer, R. Straub, K. Eichler, and T. J. Vogl. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239–244, 2002.PubMedGoogle Scholar
  87. 87.
    Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17:1247–1248, 1981.CrossRefGoogle Scholar
  88. 88.
    Massart, R. Magnetic fluids and process for obtaining them, US Patent 4329241, in US, 1982.Google Scholar
  89. 89.
    Massart, R., E. Dubois, V. Cabuil, and E. HasmonayPreparation and properties of monodisperse magnetic fluids. J. Magn. Magn. Mater. 149:1–5, 1995.CrossRefGoogle Scholar
  90. 90.
    Matuszewski, L., T. Persigehl, A. Wall, W. Schwindt, B. Tombach, M. Fobker, C. Poremba, W. Ebert, W. Heindel, and C. Bremer. Cell tagging with clinically approved iron oxides: Feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161, 2005.PubMedGoogle Scholar
  91. 91.
    Moffat, B. A., G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2:324–332, 2003.CrossRefPubMedGoogle Scholar
  92. 92.
    Molday, R. S. Magnetic iron-dextran microspheres, US Patent 4452773, in 1984.Google Scholar
  93. 93.
    Molday, R. S., and D. MacKenzie. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 52:353–367, 1982.CrossRefPubMedGoogle Scholar
  94. 94.
    Moore, A., J. Basilion, A. Chiocca, and R. Weissleder. Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta 1402:239–249, 1998.CrossRefPubMedGoogle Scholar
  95. 95.
    Moore, A., E. Marecos, A. Bogdanov Jr., and R. Weissleder. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574, 2000.PubMedGoogle Scholar
  96. 96.
    Moore, A., Z. Medarova, A. Potthast, and G. Dai. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64:1821–1827, 2004.CrossRefPubMedGoogle Scholar
  97. 97.
    Morais, P. C., P. P. Gravina, A. F. Bakuzis, K. Skeff Neto, and E. C. D. Lima. Magneto-optical properties of ionic magnetic fluids: The effect of the nanoparticle surface passivation. Phys. Status Solidi C 1:3575–3578, 2004.CrossRefGoogle Scholar
  98. 98.
    Morales, M. P., S. Veintemillas-Verdaguer, M. I. Montero, and C. J. Serna. Surfance and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 11:3058, 1999.CrossRefGoogle Scholar
  99. 99.
    Morawski, A. M., P. M. Winter, K. C. Crowder, S. D. Caruthers, R. W. Fuhrhop, M. J. Scott, J. D. Robertson, D. R. Abendschein, G. M. Lanza, and S. A. Wickline. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med. 51:480–486, 2004.CrossRefPubMedGoogle Scholar
  100. 100.
    Mornet, S., S. Vasseur, F. Grasset, and E. Duguet. Magnetic nanoparticles design for medical diagnosis and therapy. Bioconjug. Chem. 14:2161–2175, 2004.Google Scholar
  101. 101.
    Nitin, N., L. E. LaConte, O. Zurkiya, X. Hu, and G. Bao. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9:706–712, 2004.CrossRefPubMedGoogle Scholar
  102. 102.
    Palmacci, S., and L. Josephson. Synthesis of polysaccharide covered superparamagnetic oxid colloids, US Patent 5262176, in US, Advanced Magnetics, Inc., 1993.Google Scholar
  103. 103.
    Papell, S. S. US Patent 3215572, in US, 1965.Google Scholar
  104. 104.
    Passirani, C., G. Barratt, J. P. Devissaguet, and D. Labarre. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 15:1046–1050, 1998.CrossRefPubMedGoogle Scholar
  105. 105.
    Perez, J. M., L. Josephson, T. O’Loughlin, D. Hogemann, and R. Weissleder. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–820, 2002.PubMedGoogle Scholar
  106. 106.
    Perez, J. M., T. O’Loughin, F. J. Simeone, R. Weissleder, and L. Josephson. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124:2856–2857, 2002.CrossRefPubMedGoogle Scholar
  107. 107.
    Perez, J. M., F. Simeone, A. Tsourkas, L. Josephson, and R. Weissleder. Peroxidase substrate nanosensors for MR imaging. Nano Lett. 4:119–122, 2004.CrossRefGoogle Scholar
  108. 108.
    Perez, J. M., F. J. Simeone, Y. Saeki, L. Josephson, and R. Weissleder. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125:10192–10193, 2003.CrossRefPubMedGoogle Scholar
  109. 109.
    Petri-Fink, A., M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694, 2005.CrossRefPubMedGoogle Scholar
  110. 110.
    Phelps, M. E. PET: A biological imaging technique. Neurochem. Res. 16:929–940, 1991.CrossRefPubMedGoogle Scholar
  111. 111.
    Pileni, M. P. Reverse Micelles as Microreactors. J. Phys. Chem. 97:6961–6973, 1993.CrossRefGoogle Scholar
  112. 112.
    Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2:145–150, 2003.CrossRefPubMedGoogle Scholar
  113. 113.
    Pillai, V., P. Kumar, M. J. Hou, P. Ayyub, and D. O. Shah. Preparation of nanoparticles of silver-halides, superconductors and magnetic-materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Interface Sci. 55:241–269, 1995.CrossRefGoogle Scholar
  114. 114.
    Qhobosheane, M., S. Santra, P. Zhang, and W. Tan. Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278, 2001.CrossRefPubMedGoogle Scholar
  115. 115.
    Qian, Z. M., H. Li, H. Sun, and K. Ho. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587, 2002.CrossRefPubMedGoogle Scholar
  116. 116.
    Raynal, I., P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi, and C. Corot. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39:56–63, 2004.CrossRefPubMedGoogle Scholar
  117. 117.
    Reimer, P., N. Jahnke, M. Fiebich, W. Schima, F. Deckers, C. Marx, N. Holzknecht, and S. Saini. Hepatic lesion detection and characterization: Value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 217:152–158, 2000.PubMedGoogle Scholar
  118. 118.
    Reimer, P., and P. Landwehr. Non-invasive vascular imaging of peripheral vessels. Eur. Radiol. 8:858–872, 1998.CrossRefPubMedGoogle Scholar
  119. 119.
    Reimer, P., R. Weissleder, A. S. Lee, J. Wittenberg, and T. J. Brady. Receptor imaging: Application to MR imaging of liver cancer. Radiology 177:729–734, 1990.PubMedGoogle Scholar
  120. 120.
    Reimer, P., R. Weissleder, T. Shen, W. T. Knoefel, and T. J. Brady. Pancreatic receptors: Initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193:527–531, 1994.PubMedGoogle Scholar
  121. 121.
    Reimers, G. W., and S. E. Khalafalla. Preparing magnetic fluids by a peptizing method. Bureau Mines Tech. Prog. Rep. 59, 1972.Google Scholar
  122. 122.
    Rockenberger, J., E. C. Scher, and A. P. Alivisatos. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121:11595–11596, 1999.CrossRefGoogle Scholar
  123. 123.
    Rosensweig, R. E. Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.Google Scholar
  124. 124.
    Ruehm, S. G., C. Corot, P. Vogt, H. Cristina, and J. F. Debatin. Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits. Acad. Radiol. 9( Suppl 1):S143–S144, 2002.CrossRefPubMedGoogle Scholar
  125. 125.
    Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12:697–715, 1996.CrossRefPubMedGoogle Scholar
  126. 126.
    Saeed, M., M. F. Wendland, M. Engelbrecht, H. Sakuma, and C. B. Higgins. Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur. Radiol. 8:1047–1053, 1998.CrossRefPubMedGoogle Scholar
  127. 127.
    Saleh, A., M. Schroeter, C. Jonkmanns, H. P. Hartung, U. Modder, and S. Jander. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127:1670–1677, 2004.PubMedGoogle Scholar
  128. 128.
    Schellenberger, E. A., A. Bogdanov Jr., D. Hogemann, J. Tait, R. Weissleder, and L. Josephson. Annexin V-CLIO: A nanoparticle for detecting apoptosis by MRI. Mol. Imaging 1:102–107, 2002.CrossRefPubMedGoogle Scholar
  129. 129.
    Schellenberger, E. A., D. Sosnovik, R. Weissleder, and L. Josephson. Magneto/optical annexin V, a multimodal protein. Bioconjug. Chem. 15:1062–1067, 2004.CrossRefPubMedGoogle Scholar
  130. 130.
    Schmitz, S. A., M. Taupitz, S. Wagner, K. J. Wolf, D. Beyersdorff, and B. Hamm. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J. Magn. Reson. Imaging 14:355–361, 2001.CrossRefPubMedGoogle Scholar
  131. 131.
    Schwertmann, U., and R. M. Cornell. Iron Oxides in the Laboratory, Preparation and Characterization. Cambridge: Wiley-VCH, 2003.Google Scholar
  132. 132.
    Seip, C. T., E. E. Carpenter, C. J. O’Connor, V. T. John, and S. C. Li. Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans. Magn. 34:1111–1113, 1998.CrossRefGoogle Scholar
  133. 133.
    Shamsi, K., T. Balzer, S. Saini, P. R. Ros, R. C. Nelson, E. C. Carter, S. Tollerfield, and H. P. Niendorf. Superparamagnetic iron oxide particles (SH U 555 A): Evaluation of efficacy in three doses for hepatic MR imaging. Radiology 206:365–371, 1998.PubMedGoogle Scholar
  134. 134.
    Shapiro, E. M., S. Skrtic, K. Sharer, J. M. Hill, C. E. Dunbar, and A. P. Koretsky. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 101:10901–10906, 2004.CrossRefPubMedGoogle Scholar
  135. 135.
    Shen, T., R. Weissleder, M. Papisov, A. Bogdanov Jr., and T. J. Brady. Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn. Reson. Med. 29:599–604, 1993.PubMedGoogle Scholar
  136. 136.
    Skold, C. N. Magnetic particles and methods of producing coated magnetic particles, US Patent App. 20020000398, in US, 2002.Google Scholar
  137. 137.
    Sorensen, C. M. Nanoscale Materials in Chemistry. New York: Wiley, 2001.Google Scholar
  138. 138.
    Sudimack, J., and R. J. Lee. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41:147–162, 2000.CrossRefPubMedGoogle Scholar
  139. 139.
    Suslick, K. S., M. M. Fang, and T. Hyeon. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118:11960–11961, 1996.CrossRefGoogle Scholar
  140. 140.
    Tanimoto, A., K. Oshio, M. Suematsu, D. Pouliquen, and D. D. Stark. Relaxation effects of clustered particles. J. Magn. Reson. Imaging 14:72–77, 2001.CrossRefPubMedGoogle Scholar
  141. 141.
    Tebble, R. S., and D. J. Craik. Magnetic Materials. London: Wiley-Interscience, 1969.Google Scholar
  142. 142.
    Thorstensen, K., and I. Romslo. The transferrin receptor: Its diagnostic value and its potential as therapeutic target. Scand. J. Clin. Lab. Invest. Suppl. 215:113–120, 1993.PubMedGoogle Scholar
  143. 143.
    Toma, A., E. Otsuji, Y. Kuriu, K. Okamoto, D. Ichikawa, A. Hagiwara, H. Ito, T. Nishimura, and H. Yamagishi. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 2005.Google Scholar
  144. 144.
    Tsourkas, A., O. Hofstetter, H. Hofstetter, R. Weissleder, and L. Josephson. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem. Int. Ed. Engl. 43:2395–2399, 2004.CrossRefPubMedGoogle Scholar
  145. 145.
    Tsourkas, A., V. R. Shinde-Patil, K. A. Kelly, P. Patel, A. Wolley, J. R. Allport, and R. Weissleder. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem. 16:576–581, 2005.CrossRefPubMedGoogle Scholar
  146. 146.
    Vande Berg, B. C., F. E. Lecouvet, J. P. Kanku, J. Jamart, B. E. Van Beers, B. Maldague, and J. Malghem. Ferumoxides-enhanced quantitative magnetic resonance imaging of the normal and abnormal bone marrow: Preliminary assessment. J. Magn. Reson. Imaging 9:322–328, 1999.CrossRefPubMedGoogle Scholar
  147. 147.
    Veintemillas-Verdaguer, S., M. P. Morales, and C. J. Serna. Effect of the oxidation conditions on the maghemites produced by laser pyrolysis. Appl. Organometallic Chem. 15:365–372, 2001.CrossRefGoogle Scholar
  148. 148.
    Veiseh, O., C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, and M. Zhang. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5:1003–1008, 2005.CrossRefPubMedGoogle Scholar
  149. 149.
    Vogl, T. J., R. Hammerstingl, W. Schwarz, M. G. Mack, P. K. Muller, W. Pegios, H. Keck, A. Eibl-Eibesfeldt, J. Hoelzl, B. Woessmer, C. Bergman, and R. Felix. Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. Radiology 198:881–887, 1996.PubMedGoogle Scholar
  150. 150.
    Wagner, S., J. Schnorr, H. Pilgrimm, B. Hamm, and M. Taupitz. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: Preclinical in vivo characterization. Invest. Radiol. 37:167–177, 2002.CrossRefPubMedGoogle Scholar
  151. 151.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.PubMedMathSciNetGoogle Scholar
  152. 152.
    Wang, Y. X., S. M. Hussain, and G. P. Krestin. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11:2319–2331, 2001.CrossRefPubMedGoogle Scholar
  153. 153.
    Weissleder, R. Monocrystalline iron oxide particles for studying biological tissues, US Patent 5492814, in US, The General Hospital Corporation, 1996.Google Scholar
  154. 154.
    Weissleder, R., A. Bogdanov, E. A. Neuwelt, and M. Papisov. Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev. 16:321–334, 1995.CrossRefGoogle Scholar
  155. 155.
    Weissleder, R., G. Elizondo, J. Wittenberg, A. S. Lee, L. Josephson, and T. J. Brady. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498, 1990.PubMedGoogle Scholar
  156. 156.
    Weissleder, R., G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele, and L. Josephson. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493, 1990.PubMedGoogle Scholar
  157. 157.
    Weissleder, R., P. F. Hahn, D. D. Stark, G. Elizondo, S. Saini, L. E. Todd, J. Wittenberg, and J. T. Ferrucci. Superparamagnetic iron oxide: Enhanced detection of focal splenic tumors with MR imaging. Radiology 169:399–403, 1988.PubMedGoogle Scholar
  158. 158.
    Weissleder, R., A. S. Lee, B. A. Khaw, T. Shen, and T. J. Brady. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385, 1992.PubMedGoogle Scholar
  159. 159.
    Weissleder, R., D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs, and J. Lewis. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Am. J. Roentgenol. 152:167–173, 1989.Google Scholar
  160. 160.
    Weissleder, R., D. D. Stark, E. J. Rummeny, C. C. Compton, and J. T. Ferrucci. Splenic lymphoma: Ferrite-enhanced MR imaging in rats. Radiology 166:423–430, 1988.PubMedGoogle Scholar
  161. 161.
    Yu, S., and G. M. Chow. Carboxyl group (−CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 14:2781–2786, 2004.CrossRefGoogle Scholar
  162. 162.
    Zhang, R., M. L. Brennan, X. Fu, R. J. Aviles, G. L. Pearce, M. S. Penn, E. J. Topol, D. L. Sprecher, and S. L. Hazen. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–2142, 2001.CrossRefPubMedGoogle Scholar
  163. 163.
    Zhao, M., D. A. Beauregard, L. Loizou, B. Davletov, and K. M. Brindle. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7:1241–1244, 2001.CrossRefPubMedGoogle Scholar
  164. 164.
    Zhao, M., L. Josephson, Y. Tang, and R. Weissleder. Magnetic sensors for protease assays. Angew Chem. Int. Ed. Engl. 42:1375–1378, 2003.CrossRefPubMedGoogle Scholar
  165. 165.
    Zimmer, C., R. Weissleder, K. Poss, A. Bogdanova, S. C. Wright Jr., and W. S. Enochs. MR imaging of phagocytosis in experimental gliomas. Radiology 197:533–538, 1995.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • Daniel L. J. Thorek
    • 1
  • Antony K. Chen
    • 1
  • Julie Czupryna
    • 1
  • Andrew Tsourkas
    • 1
    • 2
  1. 1.Cellular and Molecular Imaging Group, Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Cellular and Molecular Imaging Group, Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations