Annals of Biomedical Engineering

, Volume 34, Issue 1, pp 3–14 | Cite as

Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging

  • Andrew M. Smith
  • Gang Ruan
  • Matthew N. Rhyner
  • Shuming Nie
Nanobioengineering

Semiconductor quantum dots are luminescent nanoparticles that are under intensive development for use as a new class of optical imaging contrast agents. Their novel properties such as optical tunability, improved photostability, and multicolor light emission have opened new opportunities for imaging living cells and in vivo animal models at unprecedented sensitivity and spatial resolution. Combined with biomolecular engineering strategies for tailoring the particle surfaces at the molecular level, bioconjugated quantum dot probes are well suited for imaging single-molecule dynamics in living cells, for monitoring protein–protein interactions within specific intracellular locations, and for detecting diseased sites and organs in deep tissue. In this article, we describe the engineering principles for preparing high-quality quantum dots and for conjugating the dots to biomolecular ligands. We also discuss recent advances in using quantum dots for in vivo molecular and cellular imaging.

Keywords

Nanoparticles Nanotechnology Fluorescence Living cells Living animals Molecular imaging Cytotoxicity Cationic peptides Bioconjugation Dynamic light scattering 

ABBREVIATIONS

FRET

fluorescence resonance energy transfer

PEG

polyethylene glycol

QD

quantum dot

RES

reticuloendothelial system

TOP

trioctylphosphine

TOPO

trioctylphosphine oxide

Notes

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (P20 GM072069, R01 CA108468, and R01 GM058173), the U.S. Department of Energy Genomes to Life Program, and the Georgia Cancer Coalition (GCC). One of the authors (A.M.S.) acknowledges the Whitaker Foundation for generous fellowship support.

REFERENCES

  1. 1.
    Akerman, M. E., W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 99:12617–12621, 2002.CrossRefPubMedGoogle Scholar
  2. 2.
    Aldana, J., Y. A. Wang, and X. G. Peng. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123:8844–8850, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100:13226–13239, 1996.CrossRefGoogle Scholar
  4. 4.
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937, 1996.CrossRefGoogle Scholar
  5. 5.
    Bailey, R. E., and S. M. Nie. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125:7100–7106, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Bakalova, R., H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba. Quantum dots as photosensitizers? Nat. Biotechnol. 22:1360–1361, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Ballou, B., B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15:79–86, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Chan, W. C. W., and S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, F., and D. Gerion. Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4:1827–1832, 2004.CrossRefGoogle Scholar
  11. 11.
    Crouch, D., S. Norager, P. O'Brien, J. H. Park, and N. Pickett. New synthetic routes for quantum dots. Philos. Trans. R. Soc. Lond., Ser. A. 361:297–310, 2003.Google Scholar
  12. 12.
    Dabbousi, B. O., J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:9463–9475, 1997.CrossRefGoogle Scholar
  13. 13.
    Dahan, M., S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Derfus, A. M., W. C. W. Chan, and S. N. Bhatia. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16:961–966, 2004.CrossRefGoogle Scholar
  15. 15.
    Derfus, A. M., W. C. W. Chan, and S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:11–18, 2004.CrossRefGoogle Scholar
  16. 16.
    Dubertret, B., P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Efros, A. L., and A. L. Efros. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16:772–775, 1982.Google Scholar
  18. 18.
    Ekimov, A. I., and A. A. Onushchenko. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. Phys. Semicond. 16:775–778, 1982.Google Scholar
  19. 19.
    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7:626–634, 2003.CrossRefPubMedGoogle Scholar
  20. 20.
    Gao, X. H., W. C. W. Chan, and S. M. Nie. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7:532–537, 2002.CrossRefPubMedGoogle Scholar
  21. 21.
    Gao, X. H., Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22:969–976, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Gaponik, N., D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 106:7177–7185, 2002.CrossRefGoogle Scholar
  23. 23.
    Gerion, D., F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105:8861–8871, 2001.CrossRefGoogle Scholar
  24. 24.
    Goldman, E. R., E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124:6378–6382, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Guo, W., J. J. Li, Y. A. Wang, and X. G. Peng. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125:3901–3909, 2003.CrossRefPubMedGoogle Scholar
  26. 26.
    Hanaki, K., A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, and K. Yamamoto. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 302:496–501, 2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Hines, M. A., and P. Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem.. 100:468–471, 1996.CrossRefGoogle Scholar
  28. 28.
    Hines, M. A., and G. D. Scholes. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15:1844–1849, 2003.CrossRefGoogle Scholar
  29. 29.
    Hoshino, A., K. Fujioka, T. Oku, M. Suga, Y. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4:2163–2169, 2004.CrossRefGoogle Scholar
  30. 30.
    Hoshino, A., K. Hanaki, K. Suzuki, and K. Yamamoto. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun. 314:46–53, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Jaiswal, J. K., H. Mattoussi, J. M. Mauro, and S. M. Simon. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21:47–51, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim, S., B. Fisher, H. J. Eisler, and M. Bawendi. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125:11466–11467, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim, S., Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22:93–97, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Lagerholm, B., M. Wang, L. Ernst, D. Ly, H. Liu, M. Bruchez, and A. Waggoner. Multicolor coding of cells with cationic peptide coated quantum dots. Nano Lett. 4:2019–2022, 2004.CrossRefGoogle Scholar
  35. 35.
    Larson, D. R., W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436, 2003.CrossRefPubMedGoogle Scholar
  36. 36.
    Lidke, D. S., P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22:198–203, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Lim, Y. T., S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2:50–64, 2003.CrossRefGoogle Scholar
  38. 38.
    Mahtab, R., J. P. Rogers, C. P. Singleton, and C. J. Murphy. Preferential adsorption of a ''kinked'' DNA to a neutral curved surface: Comparisons to and implications for nonspecific DNA-protein interactions. J. Am. Chem. Soc. 118:7028–7032, 1996.CrossRefGoogle Scholar
  39. 39.
    Mattheakis, L., J. Dias, Y. Choi, J. Gong, M. Bruchez, J. Liu, and E. Wang. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327:200–208, 2004.CrossRefPubMedGoogle Scholar
  40. 40.
    Mattoussi, H., J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi. Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122:12142–12150, 2000.CrossRefGoogle Scholar
  41. 41.
    Mitchell, G. P., C. A. Mirkin, and R. L. Letsinger. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121:8122–8123, 1999.CrossRefGoogle Scholar
  42. 42.
    Murray, C. B., D. J. Norris, and M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715, 1993.CrossRefGoogle Scholar
  43. 43.
    Nirmal, M., and L. Brus. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32:407–414, 1999.CrossRefGoogle Scholar
  44. 44.
    Nisman, R., G. Dellaire, Y. Ren, R. Li, and D. P. Bazett-Jones. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52:13–18, 2004.PubMedGoogle Scholar
  45. 45.
    Osaki, F., T. Kanamori, S. Sando, T. Sera, and Y. Aoyama. A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126:6520–6521, 2004.CrossRefPubMedGoogle Scholar
  46. 46.
    Parak, W. J., R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos, and C. Larabell. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14:882–885, 2002.CrossRefGoogle Scholar
  47. 47.
    Peng, X. G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15:459–463, 2003.CrossRefGoogle Scholar
  48. 48.
    Peng, Z. A., and X. G. Peng. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123:183–184, 2001.CrossRefPubMedGoogle Scholar
  49. 49.
    Peng, X. G., J. Wickham, and A. P. Alivisatos. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120:5343–5344, 1998.CrossRefGoogle Scholar
  50. 50.
    Pietryga, J., R. Schaller, D. Werder, M. Stewart, V. Klimov, and J. Hollingsworth. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126:11752–11753, 2004.CrossRefPubMedGoogle Scholar
  51. 51.
    Pinaud, F., D. King, H. P. Moore, and S. Weiss. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126:6115–6123, 2004.CrossRefPubMedGoogle Scholar
  52. 52.
    Qu, L. H., and X. G. Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124:2049–2055, 2002.CrossRefPubMedGoogle Scholar
  53. 53.
    Qu, L. H., Z. A. Peng, and X. G. Peng. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1:333–337, 2001.CrossRefGoogle Scholar
  54. 54.
    Roberts, M., M. Bentley, and J. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Delivery. Rev. 54:459–476, 2002.CrossRefGoogle Scholar
  55. 55.
    Shiohara, A., A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48:669–675, 2004.PubMedGoogle Scholar
  56. 56.
    Sukhanova, A., M. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J. H. M. Cohen, and I. Nabiev. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324:60–67, 2004.CrossRefPubMedGoogle Scholar
  57. 57.
    Talapin, D. V., A. L. Rogach, A. Kornowski, M. Haase, and H. Weller. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207–211, 2001.CrossRefGoogle Scholar
  58. 58.
    Talapin, D. V., A. L. Rogach, I. Mekis, S. Haubold, A. Kornowski, M. Haase, and H. Weller. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A 202:145–154, 2002.CrossRefGoogle Scholar
  59. 59.
    Voura, E., J. Jaiswal, H. Mattoussi, and S. Simon. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10:993–998, 2004.CrossRefPubMedGoogle Scholar
  60. 60.
    Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317, 2001.CrossRefPubMedGoogle Scholar
  61. 61.
    Wu, X. Y., H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, and M. P. Bruchez. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21:41–46, 2003.CrossRefPubMedGoogle Scholar
  62. 62.
    Yu, M. W., and X. G. Peng. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 41:2368–2371, 2002.CrossRefGoogle Scholar
  63. 63.
    Yu, W. W., L. H. Qu, W. H. Guo, and X. G. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854–2860, 2003.CrossRefGoogle Scholar
  64. 64.
    Zhong, X. H., Y. Y. Feng, W. Knoll, and M. Y. Han. Alloyed ZnxCd1− xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125:13559–13563, 2003.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhong, X. H., M. Y. Han, Z. Dong, T. J. White, and W. Knoll. Composition-tunable ZnxCd1- xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125:8589–8594, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Andrew M. Smith
    • 1
  • Gang Ruan
    • 1
  • Matthew N. Rhyner
    • 1
  • Shuming Nie
    • 1
    • 2
  1. 1.Departments of Biomedical Engineering and ChemistryEmory University and Georgia Institute of TechnologyAtlantaUSA
  2. 2.Departments of Biomedical Engineering and ChemistryEmory University and Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations