Tissue Ablation with Irreversible Electroporation

  • R. V. DavalosEmail author
  • L. M. Mir
  • B. Rubinsky


This study introduces a new method for minimally invasive treatment of cancer—the ablation of undesirable tissue through the use of irreversible electroporation. Electroporation is the permeabilization of the cell membrane due to an applied electric field. As a function of the field amplitude and duration, the permeabilization can be reversible or irreversible. Over the last decade, reversible electroporation has been intensively pursued as a very promising technique for the treatment of cancer. It is used in combination with cytotoxic drugs, such as bleomycin, in a technique known as electrochemotherapy. However, irreversible electroporation was completely ignored in cancer therapy. We show through mathematical analysis that irreversible electroporation can ablate substantial volumes of tissue, comparable to those achieved with other ablation techniques, without causing any detrimental thermal effects and without the need of adjuvant drugs. This study suggests that irreversible electroporation may become an important and innovative tool in the armamentarium of surgeons treating cancer.


Electropermeabilization Cancer therapy Bioheat equation 


  1. 1.
    Baker, P. F., and D. E. Knight. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276:620–622, 1978.Google Scholar
  2. 2.
    Boone, K., D. Barber, and B. Brown. Review—Imaging with electricity: Report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21:201–232, 1997.CrossRefGoogle Scholar
  3. 3.
    Bown, S. G. Phototherapy of tumors. World J. Surgery 7:700–709, 1983.Google Scholar
  4. 4.
    Carney, C. K. Mathematical models of bioheat transfer. In: Bioengineering Heat Transfer, edited by Y. I. Choi. Boston: Academic Press, 1992, pp. 19–152.Google Scholar
  5. 5.
    Chang, D. C., B. M. Chassy, J. A. Saunders, and A. E. Sowers. Guide to Electroporation and Electrofusion. San Diego, CA: Academic Press, 1992, 569 pp.Google Scholar
  6. 6.
    Crowley, J. M. Electrical breakdown of biomolecular lipid membranes as an electromechanical instability. Biophys. J. 13:711–724, 1973.Google Scholar
  7. 7.
    Davalos, R. V., B. Rubinsky, and D. M. Otten. A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans. Biomed. Eng. 49:400–403, 2002.CrossRefGoogle Scholar
  8. 8.
    Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.CrossRefGoogle Scholar
  9. 9.
    Davalos, R. V., D. M. Otten, L. M. Mir, and B. Rubinsky. Electrical impedance tomography for imaging tissue electroporation. IEEE Trans. Biomed. Eng. 51(5):761–767, 2004.CrossRefGoogle Scholar
  10. 10.
    Deng, Z. S., and J. Liu. Blood perfusion-based model for characterizing the temperature fluctuations in living tissue. Phys. A STAT Mech. Appl. 300:521–530, 2001.CrossRefzbMATHGoogle Scholar
  11. 11.
    Diller, K. R. Modeling of bioheat transfer processes at high and low temperatures. In: Bioengineering Heat Transfer, edited by Y. I. Choi. Boston: Academic Press, 1992, pp. 157–357.Google Scholar
  12. 12.
    Duck, F. A. Physical Properties of Tissues: A Comprehensive Reference Book. San Diego: Academic Press, 1990.Google Scholar
  13. 13.
    Eto, T. K., and B. Rubinsky. Bioheat transfer. In: Introduction to Bioengineering, edited by S. A. Berger, W. Goldsmith, and E. R. Lewis. Oxford: Oxford Press, 1996.Google Scholar
  14. 14.
    Foster, R. S., R. Bihrle, N. T. Sanghvi, F. J. Fry, J. P. Donohue. High-intensity focused ultrasound in the treatment of prostatic disease. Eur. Urol. 23:44–47, 1993.Google Scholar
  15. 15.
    Gauger, B., and F. W. Bentrup. A study of dielectric membrane breakdown in the Fucus egg. J. Membr. Biol. 48:249–264, 1979.Google Scholar
  16. 16.
    Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29:371–387, 2003.CrossRefGoogle Scholar
  17. 17.
    Heller, R., R. Gilbert, and M. J. Jaroszeski. Clinical applications of electrochemotherapy. Adv. Drug Deliv. Rev. 35:119–129, 1999.CrossRefGoogle Scholar
  18. 18.
    Henriques, F. C., and A. R. Moritz. Studies in thermal injuries: The predictability and the significance of thermally induced rate processes leading to irreversible epidermal damage. Arch. Pathol. 43:489–502, 1947.Google Scholar
  19. 19.
    Jaroszeski, M. J., R. Gilbert, C. Nicolau, and R. Heller. In vivo gene delivery by electroporation. Adv. Applic. Electrochem. 35:131–137, 1999.Google Scholar
  20. 20.
    Joshi, R. P., and K. H. Schoenbach. Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. Phys. Rev. E 66:052901:1–4, 2002.CrossRefGoogle Scholar
  21. 21.
    Kinosita, K., Jr., and T. Y. Tsong. Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad. Sci. U.S.A. 74:1923–1927, 1977.Google Scholar
  22. 22.
    Lynn, J. G., R. Zwemer, A. J. Chick, and A. E. Miller. A new method for the generation of use of focused ultrasound in experimental biology. J. Gen. Physiol. 26:179–193, 1942.CrossRefGoogle Scholar
  23. 23.
    Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523:73–83, 2000.Google Scholar
  24. 24.
    Mir, L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10, 2001.CrossRefGoogle Scholar
  25. 25.
    Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.CrossRefGoogle Scholar
  26. 26.
    Mir, L. M., S. Orlowski, J. Belehradek Jr., and C. Paoletti. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer 27:68–72, 1991.CrossRefGoogle Scholar
  27. 27.
    Mir, L. M., L. F. Glass, G. Sersa, J. Teissie, C. Domenge, D. Miklavcic, M. J. Jaroszeski, S. Orlowski, D. S. Reintgen, Z. Rudolf, M. Belehradek, R. Gilbert, M. P. Rols, J. Belehradek, J. M. Bachaud, R. Deconti, B. Stabuc, M. Cemazar, P. Coninx, and R. Heller. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br. J. Cancer 77:2336–2342, 1998.Google Scholar
  28. 28.
    Neumann, E., and K. Rosenheck. Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 10:279–290, 1972.Google Scholar
  29. 29.
    Neumann, E., A. E. Sowers, and C. A. Jordan. Electroporation and Electrofusion in Cell Biology. New York: Plenum Press, 1989.Google Scholar
  30. 30.
    Neumann, E., M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. J. EMBO 1:841–845, 1982.Google Scholar
  31. 31.
    Okino, M., and H. Mohri. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78:1319–1321, 1987.Google Scholar
  32. 32.
    Onik, G., B. Rubinsky, and E. Al. Ultrasound-guided hepatic cryosurgery in the treatment of metastatic colon carcinoma. Cancer 67:901–907, 1991.Google Scholar
  33. 33.
    Onik, G. M., J. K. Cohen, G. D. Reyes, and B. Rubinsky. Transrectal ultrasound-guided percutaneous radical cryosurgical ablation of the prostate. Cancer 72:1291–1299, 1993.Google Scholar
  34. 34.
    Organ, L. W. Electrophysiological principles of radiofrequency lesion making. Appl. Neurophysiol. 39:69–76, 1976.Google Scholar
  35. 35.
    Pennes, H. H. Analysis of tissue and arterial blood flow temperatures in the resting forearm. J. Appl. Physiol. 1:93–122, 1948.Google Scholar
  36. 36.
    Rowan, N. J., S. J. Macgregor, J. G. Anderson, R. A. Fouracre, and O. Farish. Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Lett. Appl. Microbiol. 31:110–114, 2000.CrossRefGoogle Scholar
  37. 37.
    Rubinsky, B. Cryosurgery, In: Annual Review of Biomedical Engineering v. 2, edited by M. L. Yarmush, K. R. Diller, M. T. Toner, Palo Alto: Annual Reviews, pp. 157–187, 2002.Google Scholar
  38. 38.
    Shiina, S., K. Tagawa, Y. Niwa, and E. Al. Percutaneous ethanol injection therapy for hepatocellular carcinoma: Results in 146 patients. Am. J. Roentgenol. 160:1023–1028, 1993.Google Scholar
  39. 39.
    Somiari, S., J. Glasspool-Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone. Theory and in vivo application of electroporative gene delivery. Molec. Ther. 2:178–187, 2000.CrossRefGoogle Scholar
  40. 40.
    Suzuki, T., B. Shin, K. Fujikura, T. Matsuzaki, and K. Takata. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett. 425:436–440, 1998.CrossRefGoogle Scholar
  41. 41.
    Tieleman, D. P., H. Leontiadau, A. E. Mark, and S. J. Marrink. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125:6382–6383, 2003.CrossRefGoogle Scholar
  42. 42.
    Vernhes, M. C., A. Benichou, P. Pernin, P. A. Cabanes, and J. Teissie. Elimination of free-living amoebae in fresh water with pulsed electric fields. Water Res. 36:3429–3438, 2002.CrossRefGoogle Scholar
  43. 43.
    Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41:135–160, 1996.CrossRefGoogle Scholar
  44. 44.
    Zimmermann, U., J. Vienken, and G. Pilwat. Dielectric breakdown of cell membranes. Biophys. J. 14:881–899, 1974.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  1. 1.Microsystems and Advanced Concepts EngineeringSandia National LaboratoriesLivermore
  2. 2.Vectorology and gene transfer, UMR 8121 CNRSInstitut Gustave-RoussyVillejuif CédexFrance
  3. 3.Department of Mechanical Engineering, Biomedical Engineering LaboratoryUniversity of CaliforniaBerkeley

Personalised recommendations