Annals of Biomedical Engineering

, Volume 33, Issue 12, pp 1789–1801

Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment

  • Dalin Tang
  • Chun Yang
  • Jie Zheng
  • Pamela K. Woodard
  • Jeffrey E. Saffitz
  • Joseph D. Petruccelli
  • Gregorio A. Sicard
  • Chun Yuan
Article

Abstract

It is believed that atherosclerotic plaque rupture may be related to maximal stress conditions in the plaque. More careful examination of stress distributions in plaques reveals that it may be the local stress/strain behaviors at critical sites such as very thin plaque cap and locations with plaque cap weakness that are more closely related to plaque rupture risk. A “local maximal stress hypothesis” and a stress-based computational plaque vulnerability index (CPVI) are proposed to assess plaque vulnerability. A critical site selection (CSS) method is proposed to identify critical sites in the plaque and critical stress conditions which are be used to determine CPVI values. Our initial results based on 34 2D MRI slices from 14 human coronary plaque samples indicate that CPVI plaque assessment has an 85% agreement rate (91% if the square root of stress values is used) with assessment given by histopathological analysis. Large-scale and long-term patient studies are needed to further validate our findings for more accurate quantitative plaque vulnerability assessment.

Keywords

Stroke Heart attack Plaque cap rupture Fluid-structure interaction Carotid artery Coronary Blood flow Cardiovascular diseases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agresti, A. Categorical Data Analysis, 2nd ed. New York: Wiley& Sons, 2002.Google Scholar
  2. 2.
    Association for Eradication of Heart Attack (AEHA), Leaders in Cardiology from AEHA's National SHAPE Task Force Propose New, AEHA Press Release, BusinessWire, March 03, 2005. Available at http://www.businesswire.com/cgi-bin/mmg.cgi?eid=4835722, 2005.
  3. 3.
    Bathe, K. J. Finite Element Procedures. New Jersey: Prentice Hall, 1996.Google Scholar
  4. 4.
    Bathe, K. J. (Ed.). Theory and Modeling Guide, Vols. I and II: ADINA and ADINA-F. Watertown, MA: ADINA R& D, Inc., 2002.Google Scholar
  5. 5.
    Beattie, D., C. Xu, R. P. Vito, S. Glagov, and M. C. Whang. Mechanical analysis of heterogeneous, atherosclerotic human aorta. J. Biomech. Eng. 120:602–607, 1998.Google Scholar
  6. 6.
    Brossollet, L. J., and R. P. Vito. A new approach to mechanical testing and modeling of biological tissues, with application to blood vessels. J. Biomech. Eng. 118:433–439, 1996.Google Scholar
  7. 7.
    Cai, J. M., T. S. Hatsukami, M. S. Ferguson, R. Small, N. L. Polissar, and C. Yuan. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373, 2002.Google Scholar
  8. 8.
    Chandran, K. B., J. H. Mun, K. K. Choi, J. S. Chen, A. Hamilton, A. Nagaraj, and D. D. McPherson, A method for in-vivo analysis for regional arterial wall material property alterations with atherosclerosis: Preliminary results. Med. Eng. Phys. 25:289—298, 2003.CrossRefGoogle Scholar
  9. 9.
    Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions, a structural analysis with histopathological correlation. Circulation 87:1179–1187, 1993.Google Scholar
  10. 10.
    Fuster, V. In: The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification, Edited by V. Fuster, J. F. Cornhill, R. E. Dinsmore, J. T. Fallon, W. Insull, P. Libby, S. Nissen, M. E. Rosenfeld, and W. D. Wagner. AHA Monograph Series. Armonk, NY: Futura Publishing, 1998.Google Scholar
  11. 11.
    Giddens, D. P., C. K. Zarins, and S. Glagov. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–594, 1993.Google Scholar
  12. 12.
    Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056, 2001.Google Scholar
  13. 13.
    Humphrey, J. D., Cardiovascular Solid Mechanics. New York: Springer-Verlag, 2002.Google Scholar
  14. 14.
    Kaazempur-Mofrad, M. R., A. G. Isasi, H. F. Younis, R. C. Chan, D. P. Hinton, G. Sukhova, G. M. Lamuraglia, R. T. Lee, and R. D. Kamm. Characterization of the atherosclerotic carotid bifurcation using mri, finite element modeling, and histology. Ann. Biomed. Eng. 32(7):932–946, 2004.CrossRefGoogle Scholar
  15. 15.
    Kobayashi, S., D. Tsunoda, Y. Fukuzawa, H. Morikawa, D. Tang, and D. N. Ku. Flow and compression in arterial models of stenosis with lipid core. Proceedings of 2003 ASME Summer Bioengineering Conference, Miami, FL, 497–498, 2003.Google Scholar
  16. 16.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.Google Scholar
  18. 18.
    Lee, R. T., F. J. Schoen, H. M. Loree, M. W. Lark, and P. Libby. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb. Vasc. Biol. 16:1070–1073, 1996.Google Scholar
  19. 19.
    Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb. 14:230–234, 1994.Google Scholar
  20. 20.
    Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71:850–858, 1992.Google Scholar
  21. 21.
    Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull Jr., R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672, 2003.CrossRefGoogle Scholar
  22. 22.
    Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull Jr., R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108(15):1772–1778, 2003.CrossRefGoogle Scholar
  23. 23.
    Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114:274–282, 1992.Google Scholar
  24. 24.
    Ohayon, J., P. Teppaz, and G. R. Finet. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Coron. Art. Dis. 12:655–663, 2001.Google Scholar
  25. 25.
    Park, J. B. R., and J. M. Tobis. Spontaneous plaque rupture and thrombus formation in the left main coronary artery documented by intravascular ultrasound. Catheter.Cardiovasc. Diagn. 40:358–360, 1997.Google Scholar
  26. 26.
    Pedersen, P. C., J. Chakareski, and R. Lara-Montalvo. Ultrasound characterization of arterial wall structures based on integrated backscatter profiles. Proceedings for the 2003 SPIE Medical Imaging Symposium, San Diego, pp. 115–126, 2003.Google Scholar
  27. 27.
    Ravn, H. B., and E. Falk. Histopathology of plaque rupture. Cardiology Clinics. 17:263–270, 1999.Google Scholar
  28. 28.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990's. Nature 362:801–809, 1993.CrossRefGoogle Scholar
  29. 29.
    Stary, H. C., D. H. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull Jr, M. Richardson, M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, R. W. Wissler. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, AHA. Circulation, 85:391–405, 1992.Google Scholar
  30. 30.
    Stary, H. C., A. B. Chandler, S. Glasov, J. R. Guyton, W. Insull Jr, M. Richardson, M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, R. W. Wissler. A definition of initial, fatty streak and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, AHA. Circulation. 89:2462–2478, 1994.Google Scholar
  31. 31.
    Stary, H. C., A. B. Chandler, M. D. Dinsmore, V. Fuster V, S. Glagov, W. Insull Jr, M. E. Rosenfeld, C. J. Schwartz, W. D. Wagner, R. W. Wissler. Definitions of advanced types of atherosclerostic lesions and the histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, AHA. Circulation. 92:1355–1374, 1995.Google Scholar
  32. 32.
    Suri, J. S., and S. Laxminarayan. Angiography and Plaque Imaging. CRC: New York, 2003.Google Scholar
  33. 33.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Steady flow and wall compression in stenotic arteries: A 3-D thick-wall model with fluid-wall interactions. J. Biomech. Eng. 123:548–557, 2001.Google Scholar
  34. 34.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Simulating cyclic artery compression using a 3-D unsteady model with fluid-structure interactions, Comp. Struct 80:1651–1665, 2002.CrossRefGoogle Scholar
  35. 35.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3D FSI Models, J. Biomechanical Engineering, 126:363–370, 2004.Google Scholar
  36. 36.
    Tang, D., C. Yang, J. Zheng, and R. P. Vito. Effects of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Ann. Biomed. Eng. 31:1182–1193, 2003.Google Scholar
  37. 37.
    Tang, D., C. Yang, J. Zheng, P. K. Woodard, G. A. Sicard, J. E. Saffitz, and C. Yuan. 3D MRI-based multi-component fsi models for atherosclerotic plaques a 3-D FSI model. Ann. Biomed. Eng. 32(7):947–960, 2004.CrossRefGoogle Scholar
  38. 38.
    Tang, D., C. Yang, J. Zheng, P. K. Woodard, J. E. Saffitz, G. A. Sicard, and C. Yuan. In: Computational Solid and Fluid Mechanics, Edited by K. J. Bathe. New York: Elsevier, 2005.Google Scholar
  39. 39.
    Williamson, S. D., Y. Lam, H. F. Younis, H. Huang, S. Patel, M. R. Kaazempur-Mofrad, and R. D. Kamm. On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomech. Eng. 125:147–155, 2003.CrossRefGoogle Scholar
  40. 40.
    Yuan, C., L. M. Mitsumori, K. W. Beach, and K. R. Maravilla. Special review: Carotid atherosclerotic plaque: Noninvasive MR characterization and identification of vulnerable lesions. Radiology 221:285–99, 2001.Google Scholar
  41. 41.
    Yuan, C., L. M. Mitsumori, M. S. Ferguson, N. L. Polissar, D. E. Echelard, G. Ortiz, R. Small, J. W. Davies, W. S. Kerwin, and T. S. Hatsukami. In vivo accuracy of multispectral MR imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104:2051–2056, 2001.Google Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Dalin Tang
    • 1
    • 7
  • Chun Yang
    • 1
    • 2
  • Jie Zheng
    • 3
  • Pamela K. Woodard
    • 3
  • Jeffrey E. Saffitz
    • 4
  • Joseph D. Petruccelli
    • 1
  • Gregorio A. Sicard
    • 5
  • Chun Yuan
    • 6
  1. 1.Mathematical Sciences DepartmentWorcester Polytechnic InstituteWorcester
  2. 2.Mathematics DepartmentBeijing Normal UniversityBeijingP. R. China
  3. 3.Mallinkcrodt Institute of RadiologyWashington UniversitySt. Louis
  4. 4.Department of PathologyWashington UniversitySt. Louis
  5. 5.Department of SurgeryWashington UniversitySt. Louis
  6. 6.Deparment of RadiologyUniversity of WashingtonSeattle
  7. 7.Mathematical Sciences DepartmentWorcester Polytechnic InstituteWorcester

Personalised recommendations