Annals of Biomedical Engineering

, Volume 33, Issue 12, pp 1778–1788 | Cite as

Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-Based Conditioning Approach

  • Anita Mol
  • Niels J. B. Driessen
  • Marcel C. M. Rutten
  • Simon P. Hoerstrup
  • Carlijn V. C. Bouten
  • Frank P. T. Baaijens
Article

Abstract

Current mechanical conditioning approaches for heart valve tissue engineering concentrate on mimicking the opening and closing behavior of the leaflets, either or not in combination with tissue straining. This study describes a novel approach by mimicking only the diastolic phase of the cardiac cycle, resulting in tissue straining. A novel, yet simplified, bioreactor system was developed for this purpose by applying a dynamic pressure difference over a closed tissue engineered valve, thereby inducing dynamic strains within the leaflets. Besides the use of dynamic strains, the developing leaflet tissues were exposed to prestrain induced by the use of a stented geometry. To demonstrate the feasibility of this strain-based conditioning approach, human heart valve leaflets were engineered and their mechanial behavior evaluated. The actual dynamic strain magnitude in the leaflets over time was estimated using numerical analyses. Preliminary results showed superior tissue formation and non-linear tissue-like mechanical properties in the strained valves when compared to non-loaded tissue strips. In conclusion, the strain-based conditioning approach, using both prestrain and dynamic strains, offers new possibilities for bioreactor design and optimization of tissue properties towards a tissue-engineered aortic human heart valve replacement.

Keywords

Heart valve prostheses Bioreactor Mechanical conditioning Straining Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barron, V., E. Lyons, C. Stenson-Cox, P. E. McHugh, and A. Pandit. Bioreactors for cardiovascular cell and tissue growth: A review. Ann. Biomed. Eng. 31:1017–1030, 2003.CrossRefGoogle Scholar
  2. 2.
    Chapman, G. B., W. Durante, J. D. Hellums, and A. I. Schafer. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H748–H754, 2000.Google Scholar
  3. 3.
    Dethlefsen, S. M., D. Shepro, and P. A. D'Amore. Comparison of the effects of mechanical stimulation on venous and arterial smooth muscle cells in vivo. J. Vasc. Res. 33:405–413, 1996.CrossRefGoogle Scholar
  4. 4.
    Driessen, N. J. B., C. V. C. Bouten, and F. P. T. Baaijens. A structural constitutive model for collagenous cardiovascular tissue incorporating the angular fiber distribution. J. Biomech. Eng. 127:494–503, 2005.Google Scholar
  5. 5.
    Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, W. Flameng, and P. R. Verdonck. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Organs 26:710–714, 2002.CrossRefGoogle Scholar
  6. 6.
    Engelmayr, G. C., E. Rabkin, F. W. H. Sutherland, F. J. Schoen, J. E. Mayer, and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26:175–187, 2005.CrossRefGoogle Scholar
  7. 7.
    Hildebrand, D. K., Z. J. Wu, J. E. Mayer, and M. S. Sacks. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32:1039–1049, 2004.CrossRefGoogle Scholar
  8. 8.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vitro. Circulation 102(suppl III):III-44–III-49, 2000.Google Scholar
  9. 9.
    Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 6:75–79, 2000.CrossRefGoogle Scholar
  10. 10.
    Jockenhoevel, S., G. Zund, S. P. Hoerstrup, A. Schnell, and M. Turina. Cardiovascular tissue engineering: A new laminar flow chamber for in vitro improvement of mechanical tissue properties ASAIO J. 48:8–11, 2002.Google Scholar
  11. 11.
    Kim, B., J. Nikolovski, J. Bonadio, and D. J. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17:979–983, 1999.CrossRefGoogle Scholar
  12. 12.
    Kim, B., and D. J. Mooney. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122:210–215, 2000.CrossRefGoogle Scholar
  13. 13.
    Lee, A. A., D. A. Graham, S. Dela Cruz, A. Ratcliffe, and W. J. Karlon. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J. Biomech. Eng. 124:37–43, 2002.CrossRefGoogle Scholar
  14. 14.
    McCulloch, A. D., A. B. Harris, C. E. Sarraf, and M. Eastwood. New multi-cue bioreactor for tissue engineering of tubular cardiovascular samples under physiological conditions. Tissue Eng. 10:565–573, 2004.CrossRefGoogle Scholar
  15. 15.
    Mironov, V., V. Kasyanov, K. McAllister, S. Oliver, J. Sistino, and R. Markwald. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J. Cranio-fac. Surg. 14:340–347, 2003.Google Scholar
  16. 16.
    Mol, A., C. V. C. Bouten, G. Zund, C. I. Guenter, J. F. Visjager, M. I. Turina, F. P. T. Baaijens, and S. P. Hoerstrup. The relevance of large strains in functional tissue engineering of heart valves. Thorac. Cardiovasc. Surg. 51:78–83, 2003.CrossRefGoogle Scholar
  17. 17.
    Mol, A., M. I. van Lieshout, G. C. Dam-de Veen, S. Neuenschwander, S. P. Hoerstrup, F. P. T. Baaijens, and C. V. C. Bouten. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26:3113–3121, 2005.CrossRefGoogle Scholar
  18. 18.
    Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63, 1983.CrossRefGoogle Scholar
  19. 19.
    Narita, Y., K. Hata, H. Kagami, A. Usui, M. Ueda, and Y. Ueda. Novel pulse duplicating bioreactor system for tissue-engineered vascular constructs. Tissue Eng. 10:1224–1233, 2004.Google Scholar
  20. 20.
    Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.CrossRefGoogle Scholar
  21. 21.
    Niklason, L. E., W. Abott, J. Gao, B. Klagges, K. K. Hirschi, K. Ulubayram, N. Conroy, R. Jones, A. Vasanawala, S. Sanzgiri, and R. Langer. Morphological and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg. 33:628–638, 2001.CrossRefGoogle Scholar
  22. 22.
    O'Callaghan, C. J., and B. Williams. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells. Hypertension 36:319–324, 2000.Google Scholar
  23. 23.
    Rutten, M. C. M., M. Wijlaars, A. Mol, E. A. van Dam, G. J. Strijkers, K. Nicolay, and F. P. T. Baaijens. The valve exerciser: A novel bioreactor for physiological loading of tissue-engineered aortic valves. J. Biomech. (under revision).Google Scholar
  24. 24.
    Schned, A. R., K. J. Wheeler, C. A. Hodorowski, J. A. Heaney, M. S. Ernstoff, R. J. Amdur, and R. D. Harris. Tissue-shrinkage correction factor in the calculation of prostate cancer volumer. Am. J. Surg. Pathol 20:1501–1506, 1996.CrossRefGoogle Scholar
  25. 25.
    Schnell, A. M., S. P. Hoerstrup, G. Zund, S. Kolb, R. Sodian, J. F. Visjager, J. Grunenfelder, A. Suter, and M. Turina. Optimal cell source for cardiovascular tissue engineering: Venous vs. aortic human myofibroblasts. Thorac. Cardiovasc. Surg. 49:221–225, 2001.CrossRefGoogle Scholar
  26. 26.
    Segal, A. SEPRAN User Manual, Standard Problems and Programmers Guide. Leidschendam: Ingenieursbureau SEPRA, the Netherlands, 1984.Google Scholar
  27. 27.
    Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.CrossRefGoogle Scholar
  28. 28.
    Sodian, R., T. Lemke, C. Fritsche, S. P. Hoerstrup, P. Fu, E. V. Potapov, H. Hausmann, and R. Hetzer. Tissue-engineering bioreactors: A new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng. 8:863–870, 2002.CrossRefGoogle Scholar
  29. 29.
    Stradins, P., R. Lacis, I. Ozolanta, B. Purina, V. Ose, L. Feldmane, and V. Kasyanov. Comparison of biochemical and structural properties between human aortic and pulmonary valve. Eur. J. Cardiothorac. Surg. 26:634–639, 2004.CrossRefGoogle Scholar
  30. 30.
    Thompson, C. A., P. Colon-Hernandez, I. Pomerantseva, B. D. MacNeil, B. Nasseri, J. P. Vacanti, and S. N. Oesterle. A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Eng. 8:1083–1088, 2002.CrossRefGoogle Scholar
  31. 31.
    Thubrikar, M. The Aortic Valve. Boca Raton: CRC Press, 1990, 221 pp.Google Scholar
  32. 32.
    Ueba, H., M. Kawakami, and T. Yaginuma. Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Arterioscler. Thromb. Vasc. Biol. 17:1512–1516, 1997.Google Scholar
  33. 33.
    Watase, M., M. A. Awolesi, J. Ricotta, and B. E. Sumpio. Effect of pressure on cultured smooth muscle cells. Life Sci. 61:987–996, 1997.CrossRefGoogle Scholar
  34. 34.
    Williams, C., and T. M. Wick. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10:930–941, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Anita Mol
    • 1
    • 2
    • 3
  • Niels J. B. Driessen
    • 1
  • Marcel C. M. Rutten
    • 1
  • Simon P. Hoerstrup
    • 1
    • 2
  • Carlijn V. C. Bouten
    • 1
  • Frank P. T. Baaijens
    • 1
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Clinic for Cardiovascular SurgeryUniversity Hospital ZürichZürichSwitzerland
  3. 3.Department of Biomedical Engineering, Laboratory for Biomechanics and Tissue EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations