Annals of Biomedical Engineering

, Volume 33, Issue 11, pp 1536–1545 | Cite as

Shear Stress Regulates HUVEC Hydraulic Conductivity by Occludin Phosphorylation

  • Zhengyu Pang
  • David A. Antonetti
  • John M. Tarbell
Article

Abstract

Human umbilical vein endothelial cells (HUVECs) display hydraulic conductivity (LP) responses to shear stress that differ markedly from the responses of bovine aortic endothelial cells (BAECs). In HUVECs, 5, 10, and 20 dyn cm−2 steady shear stress transiently increased LP with a return to preshear baseline after a 2-h exposure to shear stress. Pure oscillatory shear stress of 0 ± 20 dyn cm−2 (mean±amplitude) had no effect on LP, whereas superposition of oscillatory shear stress on steady shear stress suppressed the effect induced by steady shear stress alone. Shear reversal (amplitude greater than mean) was not necessary for the inhibitory influence of oscillatory shear stress. The transient increase of LP by steady shear stress was not affected by incubation with BAPTA-AM (10 μM), suggesting calcium independence of the shear response. Decreasing nitric oxide (NO) concentration with L-NMMA (100 μM), a nitric oxide synthase (NOS) inhibitor, did not inhibit the HUVEC LP response to shear stress. At the protein level, 10 dyn cm−2 shear stress did not affect the total content of occludin, but it did elevate the phosphorylation level transiently. The positive correlation between occludin phosphorylation and hydraulic conductivity parallels observations in BAECs and suggests that occludin phosphorylation may be a general mediator of shear-LP responses in diverse endothelial cell types.

Key Words

Endothelial cells Nitric oxide Calcium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamson, R. H., and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. 466:303–327, 1993.Google Scholar
  2. 2.
    Antonetti, D. A., A. J. Barber, L. A. Hollinger, E. B. Wolpert, and T. W. Gardner. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274:23463–23467, 1999.CrossRefGoogle Scholar
  3. 3.
    Antonetti, D. A., E. B. Wolpert, L. DeMaio, N. S. Harhaj, and R. C. Scaduto Jr. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80:667–677, 2002.CrossRefGoogle Scholar
  4. 4.
    Arese, M., C. Ferrandi, L. Primo, G. Camussi, and F. Bussolino. HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J. Immunol. 166:1380–1388, 2001.Google Scholar
  5. 5.
    Brakemeier, S., I. Eichler, H. Hopp, R. Kohler, and J. Hoyer. Up-regulation of endothelial stretch-activated cation channels by fluid shear stress. Cardiovasc. Res. 53:209–218, 2002.CrossRefGoogle Scholar
  6. 6.
    Chang, Y. S. The Mechanism of Shear Stress-Induced Increases in Endothelial Transport Properties. PhD Thesis, State College: The Pennsylvania State University, 1998.Google Scholar
  7. 7.
    Chang, Y. S., L. L. Munn, M. V. Hillsley, R. O. Dull, J. Yuan, S. Lakshminarayanan, T. W. Gardner, R. K. Jain, and J. M. Tarbell. Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc. Res. 59:265–277, 2000.CrossRefGoogle Scholar
  8. 8.
    Chang, Y. S., J. A. Yaccino, S. Lakshminarayanan, J. A. Frangos, and J. M. Tarbell. Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler Thromb. Vasc. Biol. 20:35–42, 2000.Google Scholar
  9. 9.
    Curry, F. E., M. Zeng, and R. H. Adamson. Thrombin increases permeability only in venules exposed to inflammatory conditions. Am. J. Physiol. Heart Circ. Physiol. 285:H2446–H2453, 2003.Google Scholar
  10. 10.
    Dejana, E., O. Valiron, P. Navarro, and M. G. Lampugnani. Intercellular junctions in the endothelium and the control of vascular permeability. Ann. N. Y. Acad. Sci. 811:36–43; discussion 43–34, 1997.Google Scholar
  11. 11.
    DeMaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H105–H113, 2001.Google Scholar
  12. 12.
    DeMaio, L., J. M. Tarbell, R. C. Scaduto, T. W. Gardner, and D. A. Antonetti. A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am. J. Physiol. Heart Circ. Physiol, 286(2):H731–741, 2004.CrossRefGoogle Scholar
  13. 13.
    Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–142, 2003.CrossRefGoogle Scholar
  14. 14.
    Hillsley, M. V., and J. M. Tarbell. Oscillatory shear alters endothelial hydraulic conductivity and nitric oxide levels. Biochem. Biophys. Res. Commun. 293:1466–1471, 2002.CrossRefGoogle Scholar
  15. 15.
    Hirase, T., S. Kawashima, E. Y. Wong, T. Ueyama, Y. Rikitake, S. Tsukita, M. Yokoyama, and J. M. Staddon. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J. Biol. Chem. 276:10423–10431, 2001.CrossRefGoogle Scholar
  16. 16.
    Hirase, T., J. M. Staddon, M. Saitou, Y. Ando-Akatsuka, M. Itoh, M. Furuse, K. Fujimoto, S. Tsukita, and L. L. Rubin. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110(Pt 14):1603–1613, 1997.Google Scholar
  17. 17.
    Hsieh, H. J., N. Q. Li, and J. A. Frangos. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J. Cell Physiol. 154:143–151, 1993.CrossRefGoogle Scholar
  18. 18.
    Jaffe, E. A., R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756, 1973.Google Scholar
  19. 19.
    Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–636, 1994.Google Scholar
  20. 20.
    Lever, M. J., J. M. Tarbell, and C. G. Caro. The effect of luminal flow in rabbit carotid artery on transmural fluid transport. Exp. Physiol. 77:553–563, 1992.Google Scholar
  21. 21.
    Li, Y. S., J. Y. Shyy, S. Li, J. Lee, B. Su, M. Karin, and S. Chien. The Ras-JNK pathway is involved in shear-induced gene expression. Mol. Cell Biol. 16:5947–5954, 1996.Google Scholar
  22. 22.
    Lin, M. C., F. Almus-Jacobs, H. H. Chen, G. C. Parry, N. Mackman, J. Y. Shyy, and S. Chien. Shear stress induction of the tissue factor gene. J. Clin. Invest. 99:737–744, 1997.Google Scholar
  23. 23.
    Misko, T. P., R. J. Schilling, D. Salvemini, W. M. Moore, and M. G. Currie. A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214:11–16, 1993.CrossRefGoogle Scholar
  24. 24.
    Montermini, D., C. P. Winlove, and C. Michel. Effects of perfusion rate on permeability of frog and rat mesenteric microvessels to sodium fluorescein. J. Physiol. 543:959–975, 2002.CrossRefGoogle Scholar
  25. 25.
    Neal, C. R., and D. O. Bates. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. J. Physiol. 543:947–957, 2002.CrossRefGoogle Scholar
  26. 26.
    Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114:274–282, 1992.Google Scholar
  27. 27.
    Pang, Z., and J. M. Tarbell. In vitro study of Starling's hypothesis in a cultured monolayer of bovine aortic endothelial cells. J. Vasc. Res. 40:351–358, 2003.CrossRefGoogle Scholar
  28. 28.
    Sakao, Y., O. Kajikawa, T. R. Martin, Y. Nakahara, W. A. Hadden, 3rd, C. L. Harmon, and E. J. Miller. Association of IL-8 and MCP-1 with the development of reexpansion pulmonary edema in rabbits. Ann. Thorac. Surg. 71:1825–1832, 2001.CrossRefGoogle Scholar
  29. 29.
    Sandoval, R., A. B. Malik, T. Naqvi, D. Mehta, and C. Tiruppathi. Requirement for Ca2+ signaling in the mechanism of thrombin-induced increase in endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 280:L239–247, 2001.Google Scholar
  30. 30.
    Schwarz, G., G. Callewaert, G. Droogmans, and B. Nilius. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J. Physiol. 458:527–538, 1992.Google Scholar
  31. 31.
    Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 91:4678–4682, 1994.Google Scholar
  32. 32.
    Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268:H535–543, 1995.Google Scholar
  33. 33.
    Wachtel, M., K. Frei, E. Ehler, A. Fontana, K. Winterhalter, and S. M. Gloor. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell Sci. 112(Pt 23):4347–4356, 1999.Google Scholar
  34. 34.
    Williams, D. A. Network assessment of capillary hydraulic conductivity after abrupt changes in fluid shear stress. Microvasc. Res. 57:107–117, 1999.CrossRefGoogle Scholar
  35. 35.
    Yoshikawa, N., H. Ariyoshi, M. Ikeda, M. Sakon, T. Kawasaki, and M. Monden. Shear-stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells (HUVECs). Cell Calc. 22:189–194, 1997.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Zhengyu Pang
    • 1
  • David A. Antonetti
    • 2
  • John M. Tarbell
    • 1
    • 3
    • 4
  1. 1.Department of Chemical EngineeringThe Pennsylvania State University
  2. 2.Departments of Cellular and Molecular Physiology, and OphthalmologyCollege of MedicineHershey
  3. 3.Department of Biomedical EngineeringThe City College of New YorkNew York
  4. 4.Department of Biomedical EngineeringThe City College of New York/CUNYNew York

Personalised recommendations