Annals of Biomedical Engineering

, Volume 33, Issue 11, pp 1574–1581

Lyapunov Exponents of Laser Doppler Flowmetry Signals in Healthy and Type 1 Diabetic Subjects

Article

Abstract

The skin of diabetic subjects presents abnormalities in capillary blood flow and its regulation, often leading to the generation of plantar ulcers. In order to gain insight into this pathology for type 1 diabetic patients, Lyapunov exponents (LEs) of signals reflecting microvascular perfusion—laser Doppler flowmetry (LDF) signals—are calculated. The algorithm to compute LEs is first validated on simulated data and LDF surrogates. Then, LDF signals recorded at rest and during the application of local and progressive pressure of 11.1 Pa/s are processed. The exponents appear in pairs and are different for healthy and type 1 diabetic subjects at rest; P = 0.0556 for the 7th, 8th, and 9th LEs. Furthermore, progressive pressure has also a distinct effect on LEs. The difference is more pronounced for diabetic patients, for whom P = 0.0625 for the four LEs of highest absolute value. Because these differences arise from abnormalities in microvascular blood flow, they may help to explain the high prevalence of type 1 diabetic patients developing foot ulcers.

Key Words

Blood flow Laser Doppler flowmetry Microcirculation Nonlinear dynamics Surrogate analysis Ulcers Cutaneous pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, P., B. Fromy, S. Merzeau, A. Jardel, and J. L. Saumet. Dynamics of local pressure-induced cutaneous vasodilation in the human hand. Microvasc. Res. 61:122–129, 2001.CrossRefGoogle Scholar
  2. 2.
    Berne, R. M., and M. N. Levy. Physiology. St Louis, Missouri: Mosby, 1998.Google Scholar
  3. 3.
    Bracic, M., and A. Stefanovska. Local and global Lyapunov exponents of blood flow. Open Syst. Inf. Dyn. 4:435–456, 1997.CrossRefMATHGoogle Scholar
  4. 4.
    Bracic M., and A. Stefanovska. Lyapunov exponents of simulated and measured quasi-periodic flows. In: Signal Analysis and Prediction, edited by A. Prochazka, J. Uhlir, J. P. Rayner, and N. G. Kingsbury. Boston: Birkhäuser, 1998, pp. 479–488.Google Scholar
  5. 5.
    Bracic, M., and A. Stefanovska. Wavelet-based analysis of human blood-flow dynamics. B. Math. Biol. 60:919–935, 1998.MATHGoogle Scholar
  6. 6.
    Bracic, M., and A. Stefanovska. Nonlinear dynamics of the blood flow studied by Lyapunov exponents. B. Math. Biol. 60:417–433, 1998.MATHGoogle Scholar
  7. 7.
    Bracic, M., and A. Stefanovska. Paired Lyapunov exponents characterize blood flow dynamics in healthy subjects. Nonlinear Phenom. Complex Syst. 4:285–294, 2001.Google Scholar
  8. 8.
    Eckmann, J. P., S. Oliffson Kamphorst, D. Ruelle, and S. Ciliberto. Lyapunov exponents from a time series. Phys. Rev. A 34:4971–4979, 1986.Google Scholar
  9. 9.
    Fizanne, L., B. Fromy, M. P. Preckel, D. Sigaudo-Roussel, and J. L. Saumet. Effect of isoflurane on skin-pressure-induced vasodilation. J. Vasc. Res. 40:416–422, 2003.CrossRefGoogle Scholar
  10. 10.
    Fraser, A. M., and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33:1134–1140, 1986.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fromy, B., P. Abrahm, C. Bouvet, B. Bouhanick, P. Fressinaud, and J. L. Saumet. Early decrease of skin blood flow in response to locally applied pressure in diabetic subjects. Diabetes 51:1214–1217, 2002.Google Scholar
  12. 12.
    Fromy, B., P. Abraham, and J. L. Saumet. Non-nociceptive capsaicin-sensitive nerve terminal stimulation allows for an original vasodilatory reflex in the human skin. Brain Res. 811:166–168, 1998.CrossRefGoogle Scholar
  13. 13.
    Fromy, B., P. Abraham, and J. L. Saumet. Progressive calibrated pressure device to measure cutaneous blood flow changes to external pressure strain. Brain Res. Protoc. 5:198–203, 2000.CrossRefGoogle Scholar
  14. 14.
    Fromy, B., S. Merzeau, P. Abraham, and J. L. Saumet. Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: Involvement of CGRP, neurokinins, prostaglandins, and NO. Br. J. Pharmacol. 131:1161–1171, 2000.CrossRefGoogle Scholar
  15. 15.
    Hegger, R., H. Kantz, and T. Schreiber, Practical implementation of nonlinear time series methods: The TISEAN package. Chaos. 9:413, 1999.Google Scholar
  16. 16.
    Humeau, A., A. Koïtka, P. Abraham, J. L. Saumet, and J. P. L'Huillier. Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anesthetized healthy rats. Phys. Med. Biol. 49:843–857, 2004.Google Scholar
  17. 17.
    Humeau, A., A. Koïtka, P. Abraham, J. L. Saumet, and J. P. L'Huillier. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: Scalogram analyses. Phys. Med. Biol. 49:3957–3970, 2004.Google Scholar
  18. 18.
    Kantz, H., and T. Schreiber. Nonlinear Time Series Analysis, 2nd ed. New York: Cambridge University Press, 2004.Google Scholar
  19. 19.
    Kennel, M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45:3403–3411, 1992.CrossRefGoogle Scholar
  20. 20.
    Koïtka, A., P. Abraham, B. Bouhanick, D. Sigaudo-Roussel, C. Demiot, and J. L. Saumet. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 53:721–725, 2004.Google Scholar
  21. 21.
    Koïtka, A., M. S. Legrand-Fernandez, P. Abraham, L. Fizanne, B. Fromy, D. Sigaudo-Roussel, and J. L. Saumet. Low skin temperature impairs the cutaneous vasodilator response to local progressive pressure strain. Microvasc. Res. 67:203–206, 2004.Google Scholar
  22. 22.
    Kvernmo, H. D., A. Stefanovska, M. Bracic, K. A. Kirkebø en, and K. Kvernebo. Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvasc. Res. 56:173–182, 1998.CrossRefGoogle Scholar
  23. 23.
    Nilsson, G. E., T. Tenland, and P. Å. Öberg. A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans. BME 27:12–19, 1980.Google Scholar
  24. 24.
    Nilsson, G. E., T. Tenland, and P. Å. Öberg. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. BME 27:597–604, 1980.Google Scholar
  25. 25.
    Provenzale, A., L. A. Smith, R. Vio, and G. Murante. Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D 58:31–49, 1992.Google Scholar
  26. 26.
    Sano, M., and Y. Sawada. Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55:1082–1085, 1985.Google Scholar
  27. 27.
    Schreiber, T., and A. Schmitz. Improved surrogates' data for nonlinearity tests. Phys. Rev. Lett. 77:635, 1996.Google Scholar
  28. 28.
    Schreiber, T., and A. Schmitz, Surrogate time series. Physica D 142:346, 2000.Google Scholar
  29. 29.
    Stefanovska, A., and M. Bracic. Physics of the human cardiovascular system. Contemp. Phys. 40:31–55, 1999.CrossRefGoogle Scholar
  30. 30.
    Stefanovska, A., M. Bracic, and H. D. Kvernmo. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 46:1230–1239, 1999.CrossRefGoogle Scholar
  31. 31.
    Stefanovska, A., and P. Kroelj. Correlation integral and frequency analysis of cardiovascular functions. Open Syst. Inf. Dyn. 4:457–478, 1997.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Anne Humeau
    • 1
    • 4
  • Aneta Stefanovska
    • 2
  • Pierre Abraham
    • 3
  1. 1.Groupe ISAIP-ESAIPSaint Barthélémy d'Anjou cedexFrance
  2. 2.Group of Nonlinear Dynamics and Synergetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana
  3. 3.Laboratoire de Physiologie et d'Explorations VasculairesCentre Hospitalier Universitaire d'AngersAngers cedex 01France
  4. 4.Groupe ISAIP-ESAIPSaint Barthélémy d'Anjou cedexFrance

Personalised recommendations