Annals of Biomedical Engineering

, Volume 33, Issue 11, pp 1607–1630

Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion

  • Fatih Karaaslan
  • Yagmur Denizhan
  • Abidin Kayserilioglu
  • H. Ozcan Gulcur


This paper presents a physiological long-term model of the cardiovascular system. It integrates the previous models developed by Guyton, Uttamsingh and Coleman. Additionally it introduces mechanisms of direct effects of the renal sympathetic nerve activity (rsna) on tubular sodium reabsorption and renin secretion in accordance with experimental data from literature. The resulting mathematical model constitutes the first long-term model of the cardiovascular system accounting for the effects of rsna on kidney functions in such detail. The objective of developing such a model is to observe the consequences of long-term rsna increase and impairment of rsna inhibition under volume loading. This model provides an understanding of the rsna-related mechanisms, which cause mean arterial pressure increase in hypertension and total sodium amount increase (sodium retention) in congestive heart failure, nephrotic syndrome and cirrhosis.

Key Words

Long-term cardiovascular system model Hypertension Congestive heart failure Nephrotic syndrome Cirrhosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barba, G., F. P. Cappuccio, L. Russo, F. Stinga, R. Iacone, and P. Strazzullo. Renal function and blood pressure response to dietary salt restriction in normotensive men. Hypertension 27:1160–1164, 1996.Google Scholar
  2. 2.
    Barrett, C. J., R. Ramchandra, S.-J. Guild, A. Lala, D. M. Budgett, and S. C. Malpas. What sets the long-term level of renal sympathetic nerve activity, A role for angiotensin II and baroreflexes. Circ Res. 92:1330–1336, 2003.CrossRefGoogle Scholar
  3. 3.
    Bigelow, J. H., J. C. Dehaven, and M. L. Shapley. System analysis of the renal function. J. Theor. Biol. 41:287–322, 1973.CrossRefGoogle Scholar
  4. 4.
    Braith R. W., R. M. Mills, C. S. Wilcox, V. A. Convertino, G. L. Davis, M. C. Limacher, and C. E. Wood. Fluid homeostasis after heart transplantation: The role of cardiac denervation. J. Heart Lung Transplant. 15:872–880, 1996.Google Scholar
  5. 5.
    Braith R. W., R. M. Mills, C. S. Wilcox, G. L. Davis, and C. E. Wood. Breakdown of blood pressure and body fluid homeostasis in heart transplant recipients. J. Am. Coll. Cardiol. 27:375–383, 1996.CrossRefGoogle Scholar
  6. 6.
    Cameron, W. H. A model framework for computer simulation of overall renal function. J. Theor. Biol. 66:551–572, 1977.CrossRefGoogle Scholar
  7. 7.
    Coleman, T. G., and J. E. Hall. A mathematical model of renal hemodynamics and excretory function. In: Structuring Biological Systems: A Computer Modelling Approach, edited by S. S. Iyengar. Boca Raton, Florida: CRC Press, 1992, pp. 89–124.Google Scholar
  8. 8.
    Denton, K. M., A. Shweta, and W. P. Anderson. Pregulomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia. J. Am. Soc. Nephrol. 13:27–34, 2002.Google Scholar
  9. 9.
    DiBona, G, F., S. Y. Jones, and L. L. Sawin. Effect of endogenous angiotensin II on renal nerve activity and its arterial baroreflex regulation. Am. J. Physiol. 271 (Regul. Integr. Comp. Physiol. 40):R361–R367, 1996.Google Scholar
  10. 10.
    DiBona, G. F., and L. L. Sawin. Reflex Regulation of Renal Nerve Activity in Cardiac Failure. Am. J. Phsiol. 266 (Regul. Integr. Comp. Physiol. 35):R27–R39, 1994.Google Scholar
  11. 11.
    DiBona, G. F., S. Y. Jones, and L. L. Sawin. Angiotensin receptor antagonist improves cardiac reflex control of renal sodium handling in heart failure. Am. J. Physiol. 274 (Heart Circ. Physiol. 43):H636–H641, 1998.Google Scholar
  12. 12.
    DiBona, G. F., and U. C. Kopp. Neural control of renal function. Physiol. Rev. 77(1):75–197, 1997.Google Scholar
  13. 13.
    DiBona, G. F., L. L. Sawin, S. Y. Jones. Characteristics of renal sympathetic nerve activity in sodium retaining disorders. Am. J. Physiol. 271 (Regul. Integr. Comp. Physiol. 40):R295–R302, 1996.Google Scholar
  14. 14.
    DiBona, G. F., L. L. Sawin. Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am. J. Physiol. 260 (Regul. Integr. Comp. Physiol. 29):R298–R305, 1991.Google Scholar
  15. 15.
    DiDona, G. F. Neural control of the kidney: Past, present and future. Hypertension 41(part 2):621–624, 2003.Google Scholar
  16. 16.
    Feng, J. H., N. D. Markondu, and G. A. McGregor. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension 38:321–325, 2001.Google Scholar
  17. 17.
    Greenberg, S. G., S. Tershner, and J. L. Osborn. Neurogenic regulation of rate of achieving sodium balance after increasing sodium intake. Am. J. Physiol. 261:F300–F307, 1991.Google Scholar
  18. 18.
    Guyton A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology II: Dynamics and Control of the Body Fluids. Philadelphia:W. B. Saunders Company, 1975, p. 252, 287.Google Scholar
  19. 19.
    Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company, 2000, p. 202, 309.Google Scholar
  20. 20.
    Guyton, A. C., and T. G. Coleman. Long-term regulation of the circulation: Interrelationships with body fluids volumes. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by E. B. Reeve and A. C. Guyton. Philadelphia: W. B. Saunders Company, 1967, pp. 179–201.Google Scholar
  21. 21.
    Guyton, A. C. Circulatory Physiology III: Arterial Pressure and Hypertension. Philadelphia: W. B. Saunders Company, 1980, p. 169, 172, 198, 199, 200, 201.Google Scholar
  22. 22.
    Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: Overall regulation. Ann. Rev. Physiol. 34:13–46, 1972.CrossRefGoogle Scholar
  23. 23.
    Guyton, A. C. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev. 35:123–129, 1955.Google Scholar
  24. 24.
    Hall, J. E., M. W. Brands. The renin angiotensin-aldosterone systems: Renal mechanisms and circulatory homeostasis. In: The Kidney, Physiology and Pathophysiology, edited by D. W. Seldin and G. Gebisch. Philadelphia: Lippincott Williams & Wilkins, 2000, p. 1038.Google Scholar
  25. 25.
    Huang W. C., and J. N. Wu. Blunted renal responses to atrial natriuretic peptide and its reversal by unclipping in one-kidney, one clip goldblatt hypertensive rats. J. Hypertens. 15(2):181–189, 1997.CrossRefGoogle Scholar
  26. 26.
    Ichikawa I. Hemodynamic influence of altered distal salt delivery on glomerular microcirculation. Kidney Int. 22(Suppl 12):S109–S113, 1982.MathSciNetGoogle Scholar
  27. 27.
    Ikeda N., F. Maruo, M. Shirataka, and T. Sato. A model of overall regulation of body fluids. Ann. Biomed. Eng. 7:135–166, 1979.Google Scholar
  28. 28.
    Jacob, F., P. Ariza, and J. W. Osborn. Renal denervation chronically lowers arterial pressure independent of dietary sodium intake in normal rats. Am. J. Physiol. Heart Circ. Physiol. 284:H2302–H2310, 2003.Google Scholar
  29. 29.
    Kottke, F. J., W. G. Kubicek, and M. B. Visscher. The production of arterial hypertension by chronic renal-nerve stimulation. Am. J. Physiol. 145:38–47, 1945.Google Scholar
  30. 30.
    Krück, F., and H. J. Kramer. Third factor and edema formation. Cont. Nephrol. 13:12–20, 1978.Google Scholar
  31. 31.
    Lohmeier, T. E. Interactions between angiotensin II and baroreflexes in long-term regulation of renal sympathetic nerve activity. Circ. Res. 92:1282–1284, 2003.CrossRefGoogle Scholar
  32. 32.
    Lohmeier, T. E., D. A. Hildebrandt, and W. A. Hood. Renal nerves promote sodium excretion during long-term increases in salt intake. Hypertension 33(part II):487–492, 1999.Google Scholar
  33. 33.
    Lohmeier, T. E., H. L. Mizelle, G. A. Reinhart, and J. P. Montani. Influence of angiotensin on the early progression of heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R74–R86, 2000.Google Scholar
  34. 34.
    Mejia R., J. F. Sands, J. L. Stephenson, and M. A. Knepper. Renal actions of atrial natriuretic factor: A mathematical modeling study. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol.) 26:F1146–F1157, 1989.Google Scholar
  35. 35.
    Miki K., Y. Hayashida, and K. Shiraki. Cardiac-renal neural reflex plays a major role in natriuresis by left atrial distention. Am. J. Physiol. 264 (Regul. Integr. Comp. Physiol. 33):R369–R375, 1993.Google Scholar
  36. 36.
    Nelson, L. D., and J. L. Osborn. Neurogenic control of renal function in response to graded nonhypotensive hemorrhage in conscious dogs. Am. J. Physiol. 264 (Regul. Integr. Comp. Physiol. 33):R661–R1667, 1993.Google Scholar
  37. 37.
    Nomora, G., T. Takabatake, S. Arai, D. Uno, M. Shimao, and N. Hattori. Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog. Am. J. Physiol. 232(1):F16–F19, 1977.Google Scholar
  38. 38.
    Reinhart, G. A., T. E. Lohmeier, and C. E. Hord. Hypertension induced by chronic renal adrenergic stimulation is angiotensin dependent. Hypertension. 25:940–949, 1995.Google Scholar
  39. 39.
    Singer, D. R. J., N. D. Markandu, J. J. Morton, M. A. Miller, G. A. Sagnella, and G. A. MacGregor. Angiotensin II suppression is a major factor permitting excretion of an acute sodium load in humans. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol 35):F89–F93, 1994.Google Scholar
  40. 40.
    Uttamsingh, R. J., M. S. Leaning, J. A. Bushman, E. R. Carson, and L. Finkelstein. Mathematical model of the human renal system. Med. Biol. Eng. Comput. 23:525–535, 1985.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Fatih Karaaslan
    • 1
  • Yagmur Denizhan
    • 2
    • 4
  • Abidin Kayserilioglu
    • 3
  • H. Ozcan Gulcur
    • 1
  1. 1.Institute of Biomedical EngineeringBogazici UniversityTurkey
  2. 2.Electrical and Electronics Engineering DepartmentBogazici UniversityTurkey
  3. 3.Sports Medicine Department, Istanbul Medical FacultyIstanbul UniversityTurkey
  4. 4.Electrical and Electronics Engineering DepartmentBogazici UniversityBebekTurkey

Personalised recommendations