Annals of Biomedical Engineering

, Volume 33, Issue 10, pp 1295–1311

Biomodels of Bone: A Review

Article

Abstract

In this paper, a definition of a biomodel is presented, based on which different specific types of biomodels are identified, viz., virtual biomodels, computational biomodels, and physical biomodels. The paper then focuses on both physical and virtual biomodels of bone, and presents a review of model generation methodologies, giving examples of typical biomodel applications. The use of macroscale biomodels for such issues as the design and preclinical testing of surgical implants and preoperative planning is discussed. At the microscale, biomodels of trabecular bone are examined and the link with scaffolds for tissue engineering is established. Conclusions are drawn on the state of the art, and the major developments necessary for the continued expansion of the field are identified. Finally, arguments are given on the benefits of integrating the use of the different types of biomodels reviewed in this paper, for the benefit of future research in biomechanics and biomaterials.

Keywords

Bone biomodels Rapid prototyping Implants Trabecular bone Tissue engineering scaffolds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abukawa, H., H. Terai, D. Hannouche, J. P. Vacanti, L. B. Kaban, and M. J. Troulis. Formation of a mandibular condyle in vitro by tissue engineering. J. Oral Maxillofac. Surg. 61(1):94–100, 2003.CrossRefPubMedGoogle Scholar
  2. 2.
    Alberti, C. Three-dimensional CT and structure models. Br. J. Radiol. 53(627):261–262, 1980.PubMedGoogle Scholar
  3. 3.
    Aung, S. C., B. K. Tan, C. L. Foo, and S. T. Lee. Selective laser sintering: Application of a rapid prototyping method in craniomaxillofacial reconstructive surgery. Ann. Acad. Med. Singapore 28(5):739–743, 1999.PubMedGoogle Scholar
  4. 4.
    Barker, T. M., W. J. S. Earwaker, N. Frost, and G. Wakeley. Integration of 3-D medical imaging and rapid prototyping to create stereolithographic models. Australas. Phys. Eng. Sci. Med. 16(2):79–85, 1993.PubMedGoogle Scholar
  5. 5.
    Berry, E., J. M. Brown, M. Connell, C. M. Craven, N. D. Efford, A. Radjenovic, and M. A. Smith. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19(1):90–96, 1997.CrossRefPubMedGoogle Scholar
  6. 6.
    Bill, J. S., J. F. Reuther, W. Dittmann, N. Kubler, J. L. Meier, H. Pistner, and G. Wittenberg. Stereolithography in oral and maxillofacial operation planning. Int. J. Oral Maxillofac. Surg. 24(2):98–103, 1995.PubMedGoogle Scholar
  7. 7.
    Binder, T. M., D. Moertl, G. Mundigler, G. Rehak, M. Franke, G. Delle-Karth, W. Mohl, H. Baumgartner, and G. Maurer. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation. J. Am. Coll. Cardiol. 35(1):230–237, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Blackwell, M., C. Nikou, A. M. DiGioia, and T. Kanade. An Image Overlay system for medical data visualization. Med. Image Anal. 4:67–72, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Borah, B., G. Gross, T. Dufresne, T. Smith, M. Cockman, P. Chmielewski, M. Lundy, J. Hartke, and E. Sod. Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec. (New Anat.) 265(2):101–110, 2001.CrossRefGoogle Scholar
  10. 10.
    Brief, J., S. Hassfeld, S. Däuber, A. Pernozzoli, J. Munchenberg, T. Redlich, M. Walz, R. Krempien, H. Weisser, C. Poeckler, J. Raczkowsky, O. Burgert, T. Salb, B. Kotrikova, U. Rembold, H. Wörn, R. Dillmann and J. Mühling. 3D norm data: The first step towards semiautomatic virtual craniofacial surgery. Comput. Aided Surg. 5(5):353–358, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Burg, K. J. L., S. Porter, and J. F. Kellam. Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359, 2000.CrossRefPubMedGoogle Scholar
  12. 12.
    Camarillo, D. B., T. M. Krummel, J. Salisbury, and J. Kenneth. Robotic technology in surgery: Past, present, and future. Am. J. Surg. 188(41001):2–15, 2004.CrossRefGoogle Scholar
  13. 13.
    Cancedda, R., B. Dozin, P. Giannoni, and R. Quarto. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22(1):81–91, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Chao, E. Y. S. Graphic-based musculoskeletal model for biomechanical analyses and animation. Med. Eng. Phys. 25(3):201–212, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen, M. K., and S. F. Badylak. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J. Surg. Res. 99(2):352–358, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Das, S., and S. J. Hollister. “Tissue engineering scaffolds.” In: Encyclopedia of Materials: Science and Technology, edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan. Oxford: Elsevier Science Ltd., 2001, pp. 1–7.Google Scholar
  17. 17.
    Das, S., S. J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen, K. Ramaswamy, D. Rose, and E. Widjaja. Freeform fabrication of nylon-6 tissue engineering scaffolds. Rapid Prototyping J. 9(1):43–49, 2003.CrossRefGoogle Scholar
  18. 18.
    Davis, M. W., and J. P. Vacanti. Toward development of an implantable tissue engineered liver. Biomaterials 17(3):365–372, 1996.CrossRefPubMedGoogle Scholar
  19. 19.
    D'Urso, P. S., R. L. Atkinson, M. W. Lanigan, W. J. Earwaker, I. J. Bruce, A. Holmes, T. M. Barker, D. J. Effeney, and R. G. Thompson. Stereolithographic (SL) biomodelling in craniofacial surgery. Br. J. Plast. Surg. 51(7):522–530, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    D'Urso, P. S., W. J. Earwaker, T. M. Barker, M. J. Redmond, R. G. Thompson, D. J. Effeney, and F. H. Tomlinson. Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 53(3):200–204, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    P. S., and M. J. Redmond. A method for the resection of cranial tumours and skull reconstruction. Br. J. Neurosurg. 14(6):555–559, 2000.CrossRefPubMedGoogle Scholar
  22. 22.
    D'Urso, P. S., R. G. Thompson, R. L. Atkinson, M. J. Weidmann, M. J. Redmond, B. I. Hall, S. J. Jeavons, M. D. Benson, and W. J. S. Earwaker. Cerebrovascular biomodelling: A technical note. Surg. Neurol. 52(5):490–500, 1999.CrossRefPubMedGoogle Scholar
  23. 23.
    Engelke, K., C. Süß, and W. A. Kalender. Stereolithographic models simulating trabecular bone and their characterization by thin-slice- and micro-CT. Eur. Radiol. 11(10):2026–2040, 2001.CrossRefPubMedGoogle Scholar
  24. 24.
    Eufinger, H., and E. Machtens. Reconstruction in craniofacial contour and continuity defects with preoperativly designed individual implants. Mund. Kiefer. Gesichtschir. 1(Suppl. 1):S129–S132, 1997.PubMedGoogle Scholar
  25. 25.
    Fallahi, B., M. Foroutan, S. Motavalli, M. Dujovny, and S. Limaye. Computer-aided manufacturing of implants for the repair of large cranial defects: An improvement of the stereolithography technique. Neurol. Res. 21(3):281–286, 1999.CrossRefPubMedGoogle Scholar
  26. 26.
    Flynn, L., P. D. Dalton, and M. S. Shoichet. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24(23):4265–4272, 2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Girod, S., M. Teschner, U. Schrell, B. Kevekordes, and B. Girod. Computer-aided 3-D simulation and prediction of craniofacial surgery: A new approach. J. Craniomaxillofac. Surg. 29(3):156–158, 2001.PubMedGoogle Scholar
  28. 28.
    Hafemann, B., S. Ensslen, C. Erdmann, R. Niedballa, A. Zuhlke, K. Ghofrani, and C. J. Kirkpatrick. Use of a collagen/elastin-membrane for the tissue engineering of dermis. Burns 25(5):373–384, 1999.CrossRefPubMedGoogle Scholar
  29. 29.
    Handels, H., J. Ehrhardt, W. Plotz, and S. J. Poppl. Virtual planning of hip operations and individual adaption of endoprostheses in orthopaedic surgery. Int. J. Med. Inform. 58–59:21–28, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Hassfeld, S., J. Muhling, and J. Zoller. Intraoperative navigation in oral and maxillofacial surgery. Int. J. Oral Maxillofac. Surg. 24(2):111–119, 1995.PubMedGoogle Scholar
  31. 31.
    Heckmann, S., W. Winter, M. Meyer, H. Weber, and M. Wichmann. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 1: In vivo verification of stereolithographic model. Clin. Oral Implants Res. 12(6):617–623, 2001.CrossRefPubMedGoogle Scholar
  32. 32.
    Heckmann, S., W. Winter, M. Meyer, H. Weber, and M. Wichmann. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 2: A methodical study using five types of attachment. Clin. Oral Implants Res. 12(6):640–647, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Heissler, E., F. S. Fischer, S. Bolouri, T. Lehmann, W. Mathar, A. Gebhardt, W. Lanksch, and J. Bier. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int. J. Oral Maxillofac. Surg. 27(5):334–338, 1998.PubMedGoogle Scholar
  34. 34.
    Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103, 2002.CrossRefPubMedGoogle Scholar
  35. 35.
    Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Jans, G., J. Vander Sloten, R. Gobin, G. Van der Perre, R. Van Audekercke, and M. Mommaerts. Computer-aided craniofacial surgical planning implemented in CAD software. Comput. Aided Surg. 4(3):117–128, 1999.CrossRefPubMedGoogle Scholar
  37. 37.
    Jones, J. R., and L. L. Hench. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7(4–5):301–307, 2003.CrossRefGoogle Scholar
  38. 38.
    Kadner, A., S. P. Hoerstrup, J. Tracy, C. Breymann, C. F. Maurus, S. Melnitchouk, G. Kadner, G. Zund, and M. Turina. Human umbilical cord cells: A new cell source for cardiovascular tissue engineering. Ann. Thorac. Surg. 74(4):1422–1428, 2002.CrossRefGoogle Scholar
  39. 39.
    Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23(5):611–620, 2003.CrossRefGoogle Scholar
  40. 40.
    Kermer, C., M. Rasse, G. Lagogiannis, G. Undt, A. Wagner, and W. Millesi. Colour stereolithography for planning complex maxillofacial tumour surgery. J. Craniomaxillofac. Surg. 26(6):360–362, 1998.PubMedGoogle Scholar
  41. 41.
    Kumar, P., J. K. Santosa, E. Beck, and S. Das. Direct-write deposition of fine powders through miniature hopper–nozzles for multi-material solid freeform fabrication. Rapid Prototyping J. 10(1):14–23, 2004.CrossRefGoogle Scholar
  42. 42.
    Lam, C. X. F., X. M. Mo, S. H. Teoh, and D. W. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20(1–2):49–56, 2002.CrossRefGoogle Scholar
  43. 43.
    Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447, 2002.CrossRefPubMedGoogle Scholar
  44. 44.
    Leong, K. F., C. M. Cheah, and C. K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378, 2003.CrossRefPubMedGoogle Scholar
  45. 45.
    Leyh, R. G., M. Wilhelmi, T. Walles, K. Kallenbach, P. Rebe, A. Oberbeck, T. Herden, A. Haverich, and H. Mertsching. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J. Thorac. Cardiovasc. Surg. 126(4):1000–1004, 2003.CrossRefPubMedGoogle Scholar
  46. 46.
    Liebschner, M. A. K. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9):1697–1714, 2004.CrossRefPubMedGoogle Scholar
  47. 47.
    Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37(5):623–636, 2004.CrossRefPubMedGoogle Scholar
  48. 48.
    Lindner, A., M. Rasse, H. P. Wolf, W. Millesi, R. Eglmeier, and I. Friede. Indications and use of stereolithographic skull reconstructions in oromaxillofacial surgery. Radiologe 35(9):578–582, 1995.PubMedGoogle Scholar
  49. 49.
    Meier, A. H., C. L. Rawn, and T. M. Krummel. Virtual reality: Surgical application—Challenge for the new millennium. J. Am. Coll. Surg. 192(3):372–384, 2001.CrossRefPubMedGoogle Scholar
  50. 50.
    Morris, C. L., R. F. Barber, and R. Day. Orofacial prosthesis design and fabrication using stereolithography. Aust. Dent. J. 45(4):250–253, 2000.PubMedGoogle Scholar
  51. 51.
    Müller, R., H. Van Campenhout, B. Van Damme, G. Van der Perre, J. Dequeker, T. Hildebrand, and P. Rüegsegger. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1):59–66, 1998.Google Scholar
  52. 52.
    Niklason, L. E., and R. S. Langer. Advances in tissue engineering of blood vessels and other tissues. Transplant Immunol. 5(4):303–306, 1997.CrossRefGoogle Scholar
  53. 53.
    Over, C., W. Meiners, K. Wissenbach, M. Lindemann, and J. Hutfless. Selective laser melting: A new approach for the direct manufacturing of metal parts and tools. In: Proceedings of the LANE 2001. Germany: Erlangen, 2001.Google Scholar
  54. 54.
    Palm, W. Rapid Prototyping Primer. Pennsylvania State University, University Park, Pennsylvania: The Learning Factory, 2002. Available on http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm
  55. 55.
    Peckitt, N. S. Stereoscopic lithography: Customized titanium implants in orofacial reconstruction. A new surgical technique without flap cover. Br. J. Oral Maxillofac. Surg. 37(5):353–369, 1999.CrossRefPubMedGoogle Scholar
  56. 56.
    Perry, T. E., S. Kaushal, F. W. H. Sutherland, K. J. Guleserian, J. Bischoff, M. Sacks, and J. E. Mayer. Bone marrow as a cell source for tissue engineering heart valves. Ann. Thorac. Surg. 75(3):761–767, 2003.CrossRefPubMedGoogle Scholar
  57. 57.
    Petzold, R., H.-F. Zeilhofer, and W. A. Kalender. Rapid protyping technology in medicine—Basics and applications. Comput. Med. Imaging Graph. 23(5):277–284, 1999.CrossRefPubMedGoogle Scholar
  58. 58.
    Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 19(4):353–357, 2000.CrossRefPubMedGoogle Scholar
  59. 59.
    Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497, 2003.CrossRefPubMedGoogle Scholar
  60. 60.
    Santler, G., H. Kärcher, A. Gaggl, and R. Kern. Stereolithography versus milled three-dimensional models: Comparison of production method, indication, and accuracy. Comput. Aided Surg. 3(5):248–256, 1998.CrossRefPubMedGoogle Scholar
  61. 61.
    Santler, G., H. Kärcher, and R. Kern. Stereolithographic models versus milled three-dimensional models. Production, indications and accuracy. Mund. Kiefer. Gesichtschir. 2(2):91–95, 1998.CrossRefPubMedGoogle Scholar
  62. 62.
    Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering of heart valves: In vitro experiences. Ann. Thorac. Surg. 70(1):140–144, 2000.CrossRefPubMedGoogle Scholar
  63. 63.
    Sohmura, T., H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, and K. Matsumura. Prototype of simulation of orthognathic surgery using a virtual reality haptic device. Int. J. Oral Maxillofac. Surg. 33(8):740–750, 2004.PubMedGoogle Scholar
  64. 64.
    Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: Overview, scope and challenges. Biotechnol. Appl. Biochem. 39(1):29–47, 2004.PubMedGoogle Scholar
  65. 65.
    Sun, W., and P. Lal. Recent development on computer aided tissue engineering—A review. Comput. Methods Programs Biomed. 67(2):85–103, 2002.CrossRefPubMedGoogle Scholar
  66. 66.
    Sun, W., B. Starly, A. Darling, and C. Gomez. Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem. 39(1):49–58, 2004.PubMedGoogle Scholar
  67. 67.
    Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer–ceramic scaffolds. Biomaterials 24(1):181–194, 2003.CrossRefPubMedGoogle Scholar
  68. 68.
    Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123, 2003.CrossRefPubMedGoogle Scholar
  69. 69.
    Vail, N. K., L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee, and J. W. Barlow. Materials for biomedical applications. Mater. Des. 20(2–3):123–132, 1999.Google Scholar
  70. 70.
    Vander Sloten, J. In: Computer Technology in Biomaterials Science and Engineering, edited by J. Vander Sloten. Chichester, West Sussex, UK: John Wiley & Sons Ltd., 2000.Google Scholar
  71. 71.
    Wang, F., L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri, and A. Lau. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Rapid Prototyping J. 10(1):42–49, 2004.Google Scholar
  72. 72.
    Winder, J., R. S. Cooke, J. Gray, T. Fannin, and T. Fegan. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J. Med. Eng. Technol. 23(1):26–28, 1999.CrossRefPubMedGoogle Scholar
  73. 73.
    Xiong, Z., Y. Yan, S. Wang, R. Zhang, and C. Zhang. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46(11):771–776, 2002.CrossRefGoogle Scholar
  74. 74.
    Yang, S., K.-F. Leong, Z. Du, and C.-K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1):1–11, 2002.CrossRefPubMedGoogle Scholar
  75. 75.
    Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185, 2002.CrossRefPubMedGoogle Scholar
  76. 76.
    Zein, I., D. W. Hutmacher, S. H. Teoh, K. F. Tam, and K. C. Tan. The processing of bioresorbable scaffolds for tissue engineering applications via fused deposition modeling. In: Proceedings of the Fourth Asian Symposium on Biomedical Materials, Singapore, 1999.Google Scholar
  77. 77.
    Zysset, P. K., A. L. Marsan, T.-M. G. Chu, R. E. Guldberg, J. W. Halloran, and S. J. Hollister. Rapid prototyping of trabecular bone for mechanical testing. In: Proceedings of the Bioengineering Conference. Sunriver, OR, USA: American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, 1997.Google Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  1. 1.National Centre for Biomedical Engineering Science and Department of Mechanical and Biomedical EngineeringNational University of IrelandGalwayIreland

Personalised recommendations