Annals of Biomedical Engineering

, Volume 33, Issue 9, pp 1249–1269 | Cite as

Oscillatory Pressurization of an Animal Cell as a Poroelastic Spherical Body



The analytical solution of a spherical poroelastic body under an oscillatory hydrostatic pressurization is obtained. This solution is then parameterized and interpreted in terms of a spherical animal cell with the cytoskeleton serving as the solid phase. It is found that for a cell with free or nearly free membrane leakage (such as in the case of an osteocytic cell body), the induced pore fluid pressure amplitude near the center of the cell exceeds the amplitude of the applied pressure by 50% if the loading frequency falls near that of normal human gait (1 Hz). A parametric analysis shows that the leakage coefficient is proportional to the intrinsic permeability ratio between the boundary and the bulk matrix. The physiological implication of the solution is further interpreted and discussed through an anatomical analysis of two representative cellular entities under compression: a chondrocyte and an osteocytic cell body. Finally, through a comparison between the characteristic time of gait and the characteristic pore fluid pressure relaxation times of various fluid-saturated entities in the body (such as a tumor, the brain, the cortical bone, the trabecular bone, and the cartilage, etc.), it is found that the gait-induced pore fluid transport seems to be important only in deeply buried cells and the mineralized cartilage.


Cell membrane Cytoskeleton Cytoplasm Poroelasticity Hydrostatic pressure Chondrocytes Osteocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alenghat, F. J., and D. E. Ingber. Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins, Sci. STKE Perspect. Available at;2002/119/pe6, 2002.
  2. 2.
    Alexopoulos, L. G., G. R. Erickson, and F. Guilak. A method for quantifying cell size from differential interference contrast images: Validation and application to osmotically stressed chondrocytes. J. Microsc. 205(2):125–135, 2002.CrossRefPubMedMathSciNetGoogle Scholar
  3. 3.
    Arramon, Y. P., and E. A. Nauman. The intrinsic permeability of cancellous bone. In: Bone Mechanics Handbook, edited by S.C. Cowin. Boca Raton, FL: CRC, 2001, pp. 25-1–25-17.Google Scholar
  4. 4.
    Atkinson, P. J., and A. S. Hallsworth. The spatial structure of bone. In: Progress in Anatomy, Vol. 2, edited by R. J. Harrison and V. Navaratnam. Cambridge, UK: Cambridge University Press, 1982.Google Scholar
  5. 5.
    Atkinson, P. J., and A. S. Hallsworth. The changing pore structure of aging human mandibular bone. Gerodontology 2(2):57–66, 1983.Google Scholar
  6. 6.
    Bear, J. Dynamics of Fluids in Porous Media. New York: Elsevier, 1972.Google Scholar
  7. 7.
    Boadu, F. K. Wave propagation in fluid-saturated media: Waveform and spectral analysis. Geophys. J. Int. 141(1):227–240, 2002.CrossRefGoogle Scholar
  8. 8.
    Brayman, A. A., M. L. Coppage, S. Vaidya, and M. W. Miller. Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHz ultrasound. Ultrasound Med. Biol. 25(6):999–1008, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Broom, N. D., and D. B. Myers. A study of the structural response of wet hyaline cartilage to various loading situations. Connect. Tissue Res. 7(4):227–237, 1980.PubMedGoogle Scholar
  10. 10.
    Clegg, J. S. Intracellular water and the cytomatrix: Some methods of study and current views. J. Cell Biol. 99(1):167s–171s, 1984.CrossRefPubMedGoogle Scholar
  11. 11.
    Cowin, S. C. Bone poroelasticity. J. Biomech. 32(3):217–238, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Deng, L., N. J. Fairbank, B. Fabry, P. G. Smith, and G. N. Maksym. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 287(2):C440–C448, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Denker, B. M., B. L. Smith, F. P. Kuhajda, and P. Agre. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263(30):15634–15642, 1988.PubMedGoogle Scholar
  14. 14.
    Felgner, H., R. Frank, and M. Schliwa. Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109:509–516, 1996.PubMedGoogle Scholar
  15. 15.
    Finlay, J. B., and R. U. Repo. Instrumentation and procedure for the controlled impact of articular cartilage. IEEE Trans. Biomed. Eng. 25(1):34–39, 1978.PubMedGoogle Scholar
  16. 16.
    Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4):923–934, 1993.CrossRefPubMedGoogle Scholar
  17. 17.
    Helmke, B. P., D. B. Thakker, R. D. Goldman, and P. F. Davies. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80(1):184–194, 2001.PubMedGoogle Scholar
  18. 18.
    Helmke, B. P., A. B. Rosen, and P. F. Davies. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84(4):2691–2699, 2003.PubMedGoogle Scholar
  19. 19.
    Hodge, W. A., R. S. Fijan, K. L. Carlson, R. G. Burgess, W. H. Harris, and R. W. Mann. Contact pressures in the human hip joint measured in vivo. Proc. Natl. Acad. Sci. U.S.A. 83(9):2879–2883, 1986.PubMedGoogle Scholar
  20. 20.
    Ingber, D. E. Tensegrity I, Cell structure and hierarchical systems biology. J. Cell Sci. 116(7):1157–1173, 2003.CrossRefGoogle Scholar
  21. 21.
    Ingber, D. E. Tensegrity II, How structural networks influence cellular information processing networks. J. Cell Sci. 116(8):1397–1408, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson, M. W., D. A. Chakkalakal, R. A. Harper, J. L. Katz, and S. W. Rouhana. Fluid flow in bone in vitro. J. Biomech. 15(11):881–885, 1982.CrossRefPubMedGoogle Scholar
  23. 23.
    Johnson, M. W. Behavior of fluid in stressed bone and cellular stimulation. Calcif. Tissue Int., 36(Suppl. 1):S72–S76, 1984.PubMedGoogle Scholar
  24. 24.
    Jones, I. L., A. Klamfeldt, and T. Santrom. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthop. Rel. Res. 165:283–289, 1982.Google Scholar
  25. 25.
    Kaarniranta, K., M. Elo, R. Sironen, M. J. Lammi, M. B. Goldring, J. E. Eriksson, L. Sistonen, and H. J. Helminen. Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 95:2319–2324, 1998.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaarniranta, K., C. I. Holmberg, H. J. Helminen, J. E. Eriksson, L. Sistonen, and M. J. Lammi. Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressurization and elevated temperature. FEBS Lett. 475:283–286, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Kaarniranta, K., C. I. Holmberg, M. J. Lammi, J. E. Eriksson, L. Sistonen, and H. J. Helminen. Primary chondrocytes resist hydrostatic pressure-induced stress while primary synovial cells and fibroblasts show modified Hsp70 response. Osteoarthritis Cartilage 9(1):7–13, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Kaarniranta, K., M. A. Elo, R. K. Sironen, H. M. Karjalainen, H. J. Helminen, and M. J. Lammi. Stress responses of mammalian cells to high hydrostatic pressure. Biorheology 40(1–3):87–92, 2003.Google Scholar
  29. 29.
    Kaczmarek, M., R. P. Subramaniam, and S. R. Neff. The hydromechanics of hydrocephalus steady-state solutions for cylindrical geometry. Bull. Math. Biol. 59(2):295–323, 1997.CrossRefPubMedGoogle Scholar
  30. 30.
    Kafka, V. On hydraulic strengthening of bones. J. Biomech. 26(6):761–762, 1993.CrossRefPubMedGoogle Scholar
  31. 31.
    Karjalainen, H. M., R. K. Sironen, M. A. Elo, K. Kaarniranta, M. Takigawa, H. J. Helminen, and M. J. Lammi. Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study. Biorheology 40(1–3):93–100, 2003.Google Scholar
  32. 32.
    Kaviany, M. Principles of Heat Transfer in Porous Media. New York: Springer-Verlag, 1991.Google Scholar
  33. 33.
    Kim, J.-M., and R. R. Parizek. Three-dimensional finite element modeling for consolidation due to ground water withdrawal in a desaturating anisotropic aquifer system. Int. J. Num. Anal. Methods Geomech. 23(6):549–571, 1999.CrossRefGoogle Scholar
  34. 34.
    Klein-Nulend, J., J. Roelofsen, C. M. Semeins, A. L. J. J. Bronckers, and E. H. Burger. Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. J. Cell. Physiol. 170:174–181, 1997.CrossRefPubMedGoogle Scholar
  35. 35.
    Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME J. Biomech. Eng. 113(3):245–258, 1991.Google Scholar
  36. 36.
    Lal, R., and S. A. John. Biological applications of atomic-force microscopy. Am. J. Physiol. Cell Physiol. 266(1):1–21, 1994.Google Scholar
  37. 37.
    Lanyon, L. E. Control of bone architecture by functional load bearing. J. Bone Miner. Res. 7(Suppl. 2):S369–S375, 1992.PubMedGoogle Scholar
  38. 38.
    Le Gall, S., A. Neuhof, and T. Rapoport. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 15(2):447–455, 2003.CrossRefPubMedGoogle Scholar
  39. 39.
    Liang, P., and T. H. MacRae. Molecular chaperones and the cytoskeleton. J. Cell Sci. 110:1431–1440, 1997.PubMedGoogle Scholar
  40. 40.
    Luby-Phelps, K., P. E. Castle, D. L. Taylor, and F. Lanni. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 84(14):4910–4913, 1987.PubMedGoogle Scholar
  41. 41.
    Luby-Phelps, K., F. Lanni, and D. L. Taylor. The submicroscopic properties of cytoplasm as a determinant of cellular function. Ann. Rev. Biophys. Biophys. Chem. 17:369–396, 1988.CrossRefGoogle Scholar
  42. 42.
    Maisetti, O., A. Guevel, P. Legros, and J.-Y. Hogrel. Prediction of endurance capacity of quadriceps muscles in humans using surface electromyogram spectrum analysis during submaximal voluntary isometric contractions. Eur. J. Appl. Physiol. 87(6):509–519, 2002.CrossRefPubMedGoogle Scholar
  43. 43.
    Martins, S. M., A. Chapeaurouge, and S. T. Ferreira. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature. J. Biol. Chem. 278(50):50449–50455, 2003.CrossRefPubMedGoogle Scholar
  44. 44.
    Mastro, A. M., M. A. Babich, W. D. Taylor, and A. D. Keith. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 81(11):3414–3418, 1984.PubMedGoogle Scholar
  45. 45.
    McGarray, J. G., and P. J. Prendergast. A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cell. Mater. 7:27–34, 2004.PubMedGoogle Scholar
  46. 46.
    Mentre, P., L. Mamraoui, G. Hui Bon Hoa, and P. Debey. Pressure-sensitivity of endoplasmic reticulum membrane and nucleolus as revealed by electron microscopy. Cell. Mol. Biol. (Noisy-le-grand) 45(3):353–362, 1999.Google Scholar
  47. 47.
    Millward-Sadler, S. J., M. O. Wright, H.-S. Lee, K. Nishida, H. Caldwell, G. Nuki, and D. M. Salter. Integrin-regulated secretion of interleukin 4: A novel pathway of mechanotransduction in human articular chondrocytes. J. Cell Biol. 145(1):183–189, 1999.CrossRefPubMedGoogle Scholar
  48. 48.
    Mobasheri, A., E. Trujillo, S. Bell, S. D. Carter, P. D. Clegg, P. Martin-Vasallo, and D. Marples. Aquaporin water channels AQP1 and AQP3, are expressed in equine articular chondrocytes. Vet. J. 168(2):143–150, 2004.CrossRefPubMedGoogle Scholar
  49. 49.
    Mohana-Borges, R., J. L. Silva, J. Ruiz-Sanz, and G. de Prat-Gay. Folding of a pressure-denatured model protein. Proc. Natl. Acad. Sci. U.S.A. 96:7888–7893, 1999.CrossRefPubMedGoogle Scholar
  50. 50.
    Mounier, N., and A.-P. Arrigo. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaper. 7(2):167–176, 2002.CrossRefGoogle Scholar
  51. 51.
    Nagatomi, J., B. P. Arulanandam, D. W. Metzger, A. Meunier, and R. Bizios. Effects of cyclic pressure on bone marrow cell cultures. J. Biomech. Eng. 124:308–314, 2002.CrossRefPubMedGoogle Scholar
  52. 52.
    Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60(9):2497–2503, 2000.PubMedGoogle Scholar
  53. 53.
    Noria, S., F. Xu, S. McCue, M. Jones, A. I. Gotlieb, and B. L. Langille. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am. J. Pathol. 164(4):1211–1223, 2004.PubMedGoogle Scholar
  54. 54.
    Parkkinen, J. J., J. Ikonen, M. J. Lammi, J. Laakkonen, M. Tammi, and H. J. Helminen. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300(1):458–465, 1993.CrossRefPubMedGoogle Scholar
  55. 55.
    Ren, G., V. S. Reddy, A. Cheng, P. Melnyk, and A. K. Mitra. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl. Acad. Sci. U.S.A. 98(4):1398–1403, 2001.CrossRefPubMedGoogle Scholar
  56. 56.
    Rice, J. R., and M. P. Cleary. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14:227–241, 1976.Google Scholar
  57. 57.
    Roelofsen, J., J. Klein-Nulend, and E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28(12):1493–1503, 1995.CrossRefPubMedGoogle Scholar
  58. 58.
    Sah, R. L., Y. J. Kim, J. Y. Doong, A.-J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5):619–636, 1989.CrossRefPubMedGoogle Scholar
  59. 59.
    Sah, R. L.-Y., A.-J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy. Effect of static and dynamic compression on matrix metabolism in cartilage explants. In: Articular Cartilage and Osteoarthritis, edited by K. E. Keuttner, New York: Raven Press, 1992, pp. 619–636.Google Scholar
  60. 60.
    Saris, D. B., A. Sanyal, K. N. An, J. S. Fitzsimmons, and S. W. O’Driscoll. Periosteum responds to dynamic fluid pressure by proliferating in vitro. J. Orthop. Res. 17(5):668–677, 1999.CrossRefPubMedGoogle Scholar
  61. 61.
    Sasahara, K., and K. Nitta. Pressure-induced unfolding of lysozyme in aqueous guanidinium chloride solution. Protein Sci. 8: 1469–1474, 1999.PubMedGoogle Scholar
  62. 62.
    Schneiderman, R., D. Keret, and A. Maroudas. Effects of mechanical and osmotic pressure on the fate of glycosaminoglycan synthesis in the human adult femoral head cartilage: An in vitro study. J. Orthop. Res. 4(4):393–408, 1986.CrossRefPubMedGoogle Scholar
  63. 63.
    Schuster, B., and U. B. Sleytr. The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochim. Biophys. Acta 1563(1/2):29–34, 2002.PubMedGoogle Scholar
  64. 64.
    Shepherd, D. E. T., and B. B. Seedhom. Thickness of human articular cartilage in joints of the lower limb. Ann. Rheum. Dis. 58(1):27–34, 1999.PubMedGoogle Scholar
  65. 65.
    Shin, D., and K. Athanasiou. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17(6):880–890, 1999.CrossRefPubMedGoogle Scholar
  66. 66.
    Simeonova, M., D. Wachner, and J. Gimsa. Cellular absorption of electric field energy: Influence of molecular properties of the cytoplasm, Bioelectrochemistry 56(1/2):215–218, 2002.CrossRefPubMedGoogle Scholar
  67. 67.
    Simon, W. H. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis Rheum. 13(3):244–256, 1970.PubMedGoogle Scholar
  68. 68.
    Sironen, R., M. Elo, K. Kaarniranta, H. J. Helminen, and M. J. Lammi. Transcriptional activation in chondrocytes submitted to hydrostatic pressure. Biorheology 37 (1/2):85–93, 2000.PubMedGoogle Scholar
  69. 69.
    Tanck, E., W. D. van Driel, J. W. Hagen, E. H. Burger, L. Blankevoort, and R. Huiskes Why does intermittent hydrostatic pressure enhance the mineralization process in fetal cartilage? J. Biomech. 32(2):153–161, 1999.CrossRefPubMedGoogle Scholar
  70. 70.
    Thi, M. M., T. Kojima, S. C. Cowin, S. Weinbaum, and D. C. Spray. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am. J. Physiol. Cell Physiol. 284(2): C389–C403, 2003.PubMedGoogle Scholar
  71. 71.
    Trujillo, E., T. Gonzalez, R. Marin, P. Martin-Vasallo, D. Marples, and A. Mobasheri. Human articular chondrocytes, synoviocytes, and synovial microvessel express aquaporin water channels; upregulation of AQP1 in rheumatoid arthritis. Histol. Histopathol. 19(2):435–444, 2004.PubMedGoogle Scholar
  72. 72.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.PubMedGoogle Scholar
  73. 73.
    Weisiger, R. A. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. Hepatology 24(5):1288–1295, 1996.PubMedGoogle Scholar
  74. 74.
    Wilson, R. G., Jr., J. E. Trogadis, S. Zimmerman, and A. M. Zimmerman. Hydrostatic pressure induced changes in the cytoarchitecture of pheochromocytoma (PC-12) cells. Cell Biol. Int. 25(7):649–666, 2001.CrossRefPubMedGoogle Scholar
  75. 75.
    Wong, M., M. Siegrist, and K. Goodwin. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693, 2003.CrossRefPubMedGoogle Scholar
  76. 76.
    Wright, M., P. Jobanputra, C. Bavington, D. M. Salter, and G. Nuki. Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: Evidence for the presence of stretch-activated membrane ion channels. Clin. Sci. (London) 90(1):61–71, 1996.Google Scholar
  77. 77.
    Wu, J., J. P. Ross, J. F. Chiu. Reparable sonoporation generated by microstreaming. J. Acoust. Soc. Am. 111(3):1460–1464, 2002.CrossRefPubMedGoogle Scholar
  78. 78.
    Xing, Y., J. N. Warnock, Z. He, S. L. Hilbert, and A. P. Yoganathan. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann. Biomed. Eng. 32(11):1461–1470, 2004.CrossRefPubMedGoogle Scholar
  79. 79.
    You, L., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34(11):1375–1386, 2001.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang, D., and S. C. Cowin. Oscillatory bending of a poroelastic beam. J. Mech. Phys. Solids 42(10):1575–1599, 1994.CrossRefMathSciNetGoogle Scholar
  81. 81.
    Zhang, D., and S. C. Cowin. Load carrying capacity of the pore pressure in a poroelastic beam subject to oscillatory excitation. In: Mechanics of Poroelastic Media: Vol. 35. Solid Mechanics and Its Application series, edited by A. P. S. Selvadurai. Dordrecht, The Netherlands: Kluwer, 1996, pp. 273–298.Google Scholar
  82. 82.
    Zhang, D., S. Weinbaum, and S. C. Cowin. Estimates of the peak pressures in the bone pore water. J. Biomech. Eng. 120(6):697–703, 1998.PubMedGoogle Scholar
  83. 83.
    Zhang, D., S. Weinbaum, and S. C. Cowin. On the calculation of bone pore fluid pressure due to mechanical loading, Special edition on Poroelasticity. Int. J. Solids Struct. 35(34/35):4981–4997, 1998.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  1. 1.Bone Mechanics Lab, Department of Mechanical and Aerospace Engineering, RutgersState University of New JerseyPiscataway

Personalised recommendations