Annals of Biomedical Engineering

, Volume 33, Issue 9, pp 1142–1157 | Cite as

Hemodynamics and Complications Encountered with Arteriovenous Fistulas and Grafts as Vascular Access for Hemodialysis: A Review

  • Ilse Van Tricht
  • Dirk De Wachter
  • Jan Tordoir
  • Pascal Verdonck


This review article describes the current state of affairs concerning in vivo, in vitro and in numero studies on the hemodynamics in vascular access for hemodialysis. The use and complications of autogenous and non-autogenous fistulas and catheters and access port devices are explained in the first part. The major hemodynamic complications are stenosis, initiated by intimal hyperplasia development, and thrombosis. The different in literature proposed conceivable causes of intimal hyperplasia development like surgical interventions, compliance mismatch, wall shear stress (WSS) and shear rate, vessel wall thrill and blood pressure are discussed on the basis of in vivo, in vitro and in numero studies.


Review Vascular access Hemodialysis Complications Hemodynamics Modelling Intimal hyperplasia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg. 15:708–716; discussion 716–7, 1992.Google Scholar
  2. 2.
    Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic Intimal Hyperplasia—Mechanical Injury or Flow Induced. J. Vasc. Surg. 15(4):708–717, 1992.CrossRefPubMedGoogle Scholar
  3. 3.
    Bender, M. H. M., C. M. A. Bruyninckx, and P. G. G. Gerlag. The brachiocephalic elbow fistula—A useful alternative angioaccess for permanent hemodialysis. J. Vasc. Surg. 20(5):808–813, 1994.PubMedGoogle Scholar
  4. 4.
    Besarab, A. Intervention for intra-access stenosis. Semin. Dial. 14:401–402, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Bhandari, S., A. Wilkinson, and L. Sellars. Saphenous-vein forearm grafts and gortex thigh grafts as alternative forms of vascular access. Clin. Nephrol. 44(5):325–328, 1995.PubMedGoogle Scholar
  6. 6.
    Blackshear, P. L., F. D. Dorman, and E. J. Steinbach. Shear, wall interaction and hemolysis. Trans. Am. Soc. Artif. Int. Organs 12:113–120, 1966.Google Scholar
  7. 7.
    Boorgu, R., A. J. Dubrow, N. W. Levin, H. My, B. J. Canaud, J. R. Lentino, D. W. Wentworth, D. A. Hatch, J. Megerman, F. R. Prosl, V. C. Gandhi, and T. S. Ing. Adjunctive antibiotic/anticoagulant lock therapy in the treatment of bacteremia associated with the use of a subcutaneously implanted hemodialysis access device. ASAIO J. 46(6):767–770, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Bosman, P. J., P. J. Blankestijn, Y. van der Graaf, R. J. Heintjes, H. A. Koomans, and B. C. Eikelboom. A comparison between PTFE and denatured homologous vein grafts for haemodialysis access: A prospective randomised multicentre trial. Eur. J. Vasc. Endovasc. Surg. 16(2):126–132, 1998.PubMedGoogle Scholar
  9. 9.
    Butler, C. E., and N. L. Tilney. Hemodialysis Access Pan B-Permanent. In: Replacement of Renal Function by Dialysis, edited by C. Jacobs, K. M. Koch, and J. F. Winchester. Dordrecht: Kluwer Academic Publishers, 1996, pp. 293–304.Google Scholar
  10. 10.
    Canaud, B., H. My, M. Morena, B. Lamy-Lacavalerie, H. Leray-Moragues, J. Y. Bosc, J. L. Flavier, P. Y. Chomel, H. D. Polaschegg, F. R. Prosl, and J. Mcgerman. Dialock: A new vascular access device for extracorporeal renal replacement therapy. Preliminary clinical results. Nephrol. Dial. Transplant. 14(3):692–698, 1999.CrossRefPubMedGoogle Scholar
  11. 11.
    Dammers, R., J. H. M. Tordoir, R. Welten, P. Kitslaar, and A. P. G. Hoeks. The effect of chronic flow changes on brachial artery diameter and shear stress in arteriovenous fistulas for hemodialysis. Int. J. Artif. Organs 25(2):124–128, 2002.PubMedGoogle Scholar
  12. 12.
    Depner, T. A., S. Rizwan, and T. A. Stasi. Pressure effects on roller pump blood flow during hemodialysis. ASAIO Trans. 36:M456–M459, 1990.PubMedGoogle Scholar
  13. 13.
    Elcheroth, J., L. Depauw, and P. Kinnaert. Elbow arieriovenous fistulas for chronic hemodialysis. Br. J. Surg. 81(7):982–984, Jul 1994.Google Scholar
  14. 14.
    Ene-Iordache, B., L. Mosconi, G. Remuzzi, and A. Remuzzi. Computational Fluid Dynamics of a vascular access case for hemodialysis. J. Biomech. Eng. Trans. ASME 123(3):284–292, 2001.Google Scholar
  15. 15.
    Enzler, M. A., T. Rajmon, M. Lachat, and F. Largiader. Long-term function of vascular access for hemodialysis. Clin. Transplant. 10(6):511–515, (Part 1), 1996.PubMedGoogle Scholar
  16. 16.
    5th European Basic Multidisciplinary Hemodialysis Access Course. Brdo pri Kranj, Karger AG pp. 409–490, 2002.Google Scholar
  17. 17.
    Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, D. Bruch, and C. E. Bredenberg. Graft Geometry and Venous Intimal-Medial Hyperplasia in Arteriovenous. Loop Grafts J. Vasc. Surg. 11(4):556–566, 1990.CrossRefGoogle Scholar
  18. 18.
    Fisher, R. K., T. V. How, T. Carpenter, J. A. Brennan, and P. L. Harris. Optimising Miller cuff dimensions. The influence of geometry on anastomotic flow patterns. Eur. J. Vasc. Endovasc. Surg. 21(3):251–260, 2001.CrossRefPubMedGoogle Scholar
  19. 19.
    Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circulat. Res. 22:165–197, 1968.PubMedGoogle Scholar
  20. 20.
    Gagne, P. J., J. Martinez, R. DeMassi, R. Gregory, F. N. Parent, R. Gayle, G. H. Meier, and C. Philput. The effect of a venous anastomosis Tyrell vein collar on the primary patency of arteriovenous grafts in patients undergoing hemodialysis. J. Vasc. Surg. 32(6):1149–1154, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Glagov, S. Intimal Hyperplasia, Vascular Modeling, and the Restenosis Problem. Circulation 89(6):2888–2891, 1994.PubMedGoogle Scholar
  22. 22.
    Glickman, M. H., G. K. Stokes, J. R. Ross, E. D. Schuman, W. C. Sternbergh, J. S. Lindberg, S. M. Money, and M. I. Lorber. Multicenter evaluation of a polyurethaneurea vascular access graft as compared with the expanded polytetrafluoroethylene vascular access graft in hemodialysis applications. J. Vasc. Surg. 34(3):465–472, 2001.CrossRefPubMedGoogle Scholar
  23. 23.
    Hayashi, K., K. Mori, and H. Miyazaki. Biomechanical response of femoral vein to chronic elevation of blood pressure in rabbits. Am. J. Physiol. Heart Circulat. Physiol. 284(2):H511–H518, 2003.Google Scholar
  24. 24.
    Heintjes, R. J., B. C. Eikelboom, J. J. F. Steijling, R. W. H. V. Dortland, F. H. W. M. Vanderheijden, M. Bastini, Y. Vandergraaf, P. J. Blankestijn, J. Vos. The results of denatured homologous vein grafts as conduits for secondary hemodialysisaccess surgery. Eur. J. Vasc. Endovasc. Surg. 9(1):58–63, 1995.PubMedGoogle Scholar
  25. 25.
    Heise, M., S. Schmidt, U. Krüger, R. Rückert, S. Rösier, P. Neuhaus, and U. Settmacher. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by panicle image velocimetry. J. Biomech. 37(7):1043–1051, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Hellums, J. D., and R. A. Hardwick. Response of platelets to shear stress-a review. In: The Rhology of Blood Vessels and Associated Tissues, edited by D. R. Gross and N. H. C. Hwang, Alphen aan den Rijn: Sijthoff and Noordhoff, 160–183, 1981.Google Scholar
  27. 27.
    Hibberd, A. D. Brachiobasilic fistulat with autogenous basilic vein – surgical technique and pilot-study. Aust. New Zealand J. Surg. 61(8):631–635, 1991.Google Scholar
  28. 28.
    Hill, R., A. Bagust, A. Bakhai, R. Dickson, Y. Dundar, A. Haycox, R. M. Mota, A. Reaney, D. Roberts, P. Williamson, and T. Walley. Coronary artery stents: a rapid systematic review and economic evaluation. Health Technol. Assess. 8(35): 1–242, 2004.Google Scholar
  29. 29.
    Himmelfarb, J., and T. Saad. Hemodialysis vascular access: Emerging concepts. Curr. Opin. Nephrol. Hypertens. 5:485–491, 1996.PubMedGoogle Scholar
  30. 30.
    Hodges, T. C., M. F. Fillinger, R. M. Zwolak, D. B. Walsh, and F. Bech, J. L. Cronenwett. Longitudinal comparison of dialysis access methods: Risk factors for failure. J. Vasc. Surg. 26(6):1009–1019, DEC 1997.Google Scholar
  31. 31.
    Hofstra, L., D. Bergmans, A. P. G. Hoeks, P. Kitslaar, K. M. L. Leunissen, and J. H. M. Tordoir. Mismatch in Elastic Properties around Anastomoses of Interposition Grafts for Hemodialysis Access. J. Am. Soc. Nephrol. 5(5):1243–1250, 1994.PubMedGoogle Scholar
  32. 32.
    Hofstra, L., D. Bergmans, K. M. L. Leunissen, A. P. G. Hoeks, P. Kitslaar, M. Daemen, and J. H. M. Tordoir. Anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J. Am. Soc. Nephrol. 6(6):1625–1633, 1995.PubMedGoogle Scholar
  33. 33.
    Jackson, Z. S., H. Ishibashi, A. L. Gotlieb, and B. L. Langille. Effects of anastomotic angle on vascular tissue responses at end-to-side arterial grafts. J. Vasc. Surg. 34(2):300–307, 2001.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang, Z. H., L. Z. Wu, B. L. Miller, D. R. Goldman, C. M. Fernandez, Z. S. Abouhamze, C. K. Ozaki, and S. A. Berceli. A novel vein graft model: adaptation to differential flow environments. Am. J. Physiol. Heart Circulat. Physiol. 286(1):H240–H245, 2004.CrossRefGoogle Scholar
  35. 35.
    Jindal, K. K., J. H. Ethier, R. M. Lindsay, P. E. Barre, J. E. Kappel, E. J. F. Carlisle, and A. Common. Clinical practice guidelines for vascular access. J. Am. Soc. Nephrol. 10(Suppl 13):S297–S305, 1999.PubMedGoogle Scholar
  36. 36.
    Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: An in vivo model study. J. Biomech. Eng. Trans. ASME 123(5):464–473, 2001.Google Scholar
  37. 37.
    Kirkman, R. L. Technique for flow reduction in dialysis access fistulas. Surg. Gynecol. & Obstetr. 172(3):231–233, 1991.Google Scholar
  38. 38.
    Kleinekofort, W., M. Kraemer, C. Rode, and V. Wizemann. Extracorporeal pressure monitoring and the detection of vascular access stenosis. Int. J. Artif. Organs 25:45–50, 2002.PubMedGoogle Scholar
  39. 39.
    Kosch, M., A. Levers, M. Barenbrock, F. Matzkies, R. M. Schaefer, K. Kisters, K. H. Rahn, and M. Hausberg. Acute effects of haemodialysis on endothelial function and large artery elasticity. Nephrol. Dial. Transplant. 16(8):1663–1668, 2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Krivitski, N. M., D. MacGibbon, R. D. Gleed, and A. Dobson. Accuracy of dilution techniques for access flow measurement during hemodialysis. Am. J. Kidney Dis. 31(3):502–508, 1998.PubMedGoogle Scholar
  41. 41.
    Kroll, M. H., J. D. Heliums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88(5):1525–1541, 1996.PubMedGoogle Scholar
  42. 42.
    Krueger, U., J. Zanow, and H. Scholz. Computational fluid dynamics and vascular access. Artif. Organs 26(7):571–575, 2002.CrossRefPubMedGoogle Scholar
  43. 43.
    Kute, S. H., and D. A. Vorp. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: Computational study. J. Biomech. Eng. Trans. ASME 123(3):277–283, 2001.Google Scholar
  44. 44.
    Leapman, S. B., M. Boyle, M. D. Pescovitz, M. L. Milgrom, R. M. Jindal, and R. S. Filo. The arteriovenous fistula for hemodialysis access: Gold standard or archaic relic? Am. Surg. 62(8):652–656, 1996.PubMedGoogle Scholar
  45. 45.
    Lee, D., J. M. Su, and H. Y. Liang. A numerical simulation of steady flow fields in a bypass tube. J. Biomech. 34(11):1407–1416, 2001.CrossRefPubMedGoogle Scholar
  46. 46.
    Lei, M., D. P. Giddens, S. A. Jones, F. Loth, and H. Bassiouny. Pulsatile flow in an end-to-side vascular graft model: Comparison of computations with experimental data. J. Biomech. Eng. Trans. ASME 123(1):80–87, 2001.Google Scholar
  47. 47.
    Lemson, M. S. Intimal hyperplasia in prosthetic vascular access The effect of flow variation and anastomotic geometry on its development. University Hospital Maastricht, PhD thesis, 2000.Google Scholar
  48. 48.
    Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35(2):225–236, 2002.CrossRefPubMedGoogle Scholar
  49. 49.
    Leverett, L. B., J. D. HellFums, C. P. Alfrey, and E. G. Lync. Red blood cell damage by shear stress. Biophys. J. 12:257–273, 1972.PubMedGoogle Scholar
  50. 50.
    Li, X. M., and S. E. Rittgers. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS: DOS flow ratios. J. Biomech. Eng. Trans. ASME 123(3):270–276, 2001.Google Scholar
  51. 51.
    Lindsay, R. M., E. Bradfield, C. Rothera, C. Kianfar, P. Malek, and B. G. Blake. A comparison of methods for the measurement of hemodialysis access recirculation and access blood flow rate. ASAIO J. 44:62–67, 1998.PubMedGoogle Scholar
  52. 52.
    Lindsay, R. M., P. G. Blake, P. Malek, G. Posen, B. Martin, and E. Bradfield. Hemodialysis access blood flow rates can be measured by a differential conductivity technique and are predictive of access clotting. Am. J. Kidney Dis. 30:475–482, 1997.PubMedGoogle Scholar
  53. 53.
    Long, Q., X. Y. Xu, K. V. Ramnarine, and P. Hoskins. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34(10):1229–1242, 2001.CrossRefPubMedGoogle Scholar
  54. 54.
    Longest, P. W., and C. Kleinstreuer. Computational haemodynamics analysis and comparison study of arterio-venous grafts. J. Med. Engin. & Technol. 24(3):102–110, 2000.Google Scholar
  55. 55.
    Longest, P. W., and C. Kleinstreuer. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses, J. Biomech. Eng. Trans. ASME 125(5):671–681, 2003.Google Scholar
  56. 56.
    Loth, F., P. P. Fischer, N. Arlan, C. D. Bertram, S. E. Lee, T. J. Royston, W. E. Shaalan, and H. S. Bassiouny. Transitional Flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J. Biomech. Eng. Trans. ASME 125:49–61, 2003.Google Scholar
  57. 57.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.CrossRefGoogle Scholar
  58. 58.
    Malovrh, M. 5th European Basic Multidisciplinary Hemodialysis Access Course. Brdo pri Kranj, Karger AG 20(4):442, 2002.Google Scholar
  59. 59.
    Malovrh, M. 5th European Basic Multidisciplinary Hemodialysis Access Course. Brdo pri Kranj, Karger AG 20(4):442, 2002.Google Scholar
  60. 60.
    McCarley, P., R. L. Wingard, Y. Shyr, W. Pettus, R. M. Hakim, and T. A. Ikizler. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int. 60:1164–1172, 2001.CrossRefPubMedGoogle Scholar
  61. 61.
    McIntire, L.V., and R. R. Martin. Mechanical trauma induced PMN leucocyte dysfunction. In: The Rhology of Blood Vessels and Associated Tissues, edited by D. R. Gross and N. H. C. Hwang, Alphen aan den Rijn: Sijthoff and Noordhoff, 1981.Google Scholar
  62. 62.
    Megerman, J., N. W. Levin, T. S. Ing, B. Canaud, and H. My. Hemodialysis (HD) Access with the DialockTM device. Blood Purif. 16:242, 1998.CrossRefGoogle Scholar
  63. 63.
    Meyerson, S. L., C. L. Skelly, M. A. Curi, U. M. Shakur, J. E. Vosicky, S. Glagov, and L. B. Schwartz. The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J. Vasc. Surg. 34(1):90–96, 2001.CrossRefPubMedGoogle Scholar
  64. 64.
    Miller, J. H., R. K. Foreman, L. Ferguson, and I. Faris. Interposition Vein Cuff for Anastomosis of Prosthesis to Small Artery. Aust. New Zealand J. Surg. 54(3):283–285, 1984.Google Scholar
  65. 65.
    Miller, P. E., A. Tolwani, C. P. Luscy, M. H. Deierhoi, R. Bailey, D. T. Redden, and M. Allon. Predictors of adequacy of arieriovenous fistulas in hemodialysis patients. Kidney Int. 56(1):275–280, 1999.CrossRefPubMedGoogle Scholar
  66. 66.
    Mittal, R., S. P. Simmons, and H. S. Udaykumar. Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Eng. Trans. ASME 123(4):325–332, 2001.Google Scholar
  67. 67.
    Nassar, G. M., and J. C. Ayus. Infectious complications of the hemodialysis access. Kidney Int. 60:1–13, 2001.CrossRefPubMedGoogle Scholar
  68. 68.
    National Kidney Foundation. K/DOQI Clinical practice guidelines for vascular access. Am. J. Kidney Dis. 37:S137–S181, 2001.Google Scholar
  69. 69.
    Neumann, M. E. Two new access devices have potential to replace the temporary catheter. Nephrol. News Issues 40, 1999.Google Scholar
  70. 70.
    Nevarill, C. G., E. G. Lynch, C. P. Alfrey, and J. D. Hellums. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 71:781–790, 1968.Google Scholar
  71. 71.
    Neyra, N. R., T. A. Ikizler, R. E. May, J. Himmelfarb, G. Schulman, Y. Shyr, and R. M. Hakim. Change in access blood flow over time predicts vascular access thrombosis. Kidney Int. 54:1714–1719, 1998.CrossRefPubMedGoogle Scholar
  72. 72.
    Nyberg, S. L., C. B. Hughes, Y. M. Valenzuela, B. M. Jenson, M. M. Benda, J. T. McCarthy, S. Sterioff, and M. D. Stegall. Preliminary experience with a cuffed ePTFE graft for hemodialysis vascular access. ASAIO J. 47(4):333–337, 2001.CrossRefPubMedGoogle Scholar
  73. 73.
    Ojha, M., R. S. C. Cobbold, and K. W. Johnston. Influence of Angle on Wall Shear-Stress Distribution for an End-to-Side. Anastomos. J. Vasc. Surg. 19(6):1067–1073, 1994.Google Scholar
  74. 74.
    Orpadt Flanders Survey, Results 2000,
  75. 75.
    Paulson, W. D. Blood flow surveillance of hemodialysis grafts and the dysfunction hypothesis. Semin. Dial. 14(3):175–180, 2001.CrossRefPubMedGoogle Scholar
  76. 76.
    Paulson, W. D., S. J. Ram, C. G. Birk, M. Zapczynski, S. R. Martin, and J. Work. Accuracy of decrease in blood flow in predicting hemodialysis graft thrombosis. Am. J. Kidney Dis. 35:1089–1095, 2000.PubMedGoogle Scholar
  77. 77.
    Prischl, F. C., A. Kirchgatterer, E. Brandstatter, M. Wallner, C. Baldinger, F. X. Roithinger, and R, Kramar. Parameters of prognostic relevance to the patency of vascular access in hemodialysis patients. J. Am. Soc. Nephrol. 6(6):1613–1618, 1995.PubMedGoogle Scholar
  78. 78.
    Redwood, A. J., S. Moore, L. Sayadelmi, and M. Tennant. Autogenous artery grafts in hypertensive (SHR) rats do not have increased smooth muscle cell hyperplasia in the graft neointima, compared with grafts in normotensive rats. J. Anat. 195:407–412, 1999.CrossRefPubMedGoogle Scholar
  79. 79.
    Revanur, V. K., A. G. Jardine, D. H. Hamilton, and R. M. Jindal. Outcome for arterio-venous fistula at the elbow for haemodialysis. Clin. Transplant. 14(4):318–322 (Part 1), 2000.CrossRefPubMedGoogle Scholar
  80. 80.
    Rigg, K. M. Complications of Vascular Access. In: Dialysis Access, Current Practice, edited by J. A. Akoh, London: Imperial College Press, 2001, pp. 131–147.Google Scholar
  81. 81.
    Rodriguez, J. A., L. Armadans, E. Ferrer, A. Olmos, S. Codina, J. Bartolom, J. Borrellas, and L. Piera. The function of permanent vascular access. Nephrol. Dial. Transplant. (7):402–408, 2000.Google Scholar
  82. 82.
    Sabanayagam, P. 15-year experience with tapered (4–7 mm) and straight (6 mm) PTFE angio-access in the ESRD patient. In: Vascular Access for Hemodialysis, edited by M. L. Henry and R. M. Ferguson, Chicago: Precept Press, pp. 91–94, 1997.Google Scholar
  83. 83.
    Salacinski, H. J., A. Tiwari, G. Hamilton, and A. M. Seifalian. Cellular engineering of vascular bypass grafts: role of chemical coatings for enhancing endothelial cell attachments. Med. Biol. Eng. Comput. 39(6):609–618, 2001.PubMedGoogle Scholar
  84. 84.
    Salacinski, H. J., G. Punshon, B. Krijgsman, G. Hamilton, and A. M. Seifalian. A hybrid compliant vascular graft seeded with microvascular endothelial cells extracted from human amentum. Artif. Organs 25(12):974–982, 2001.CrossRefPubMedGoogle Scholar
  85. 85.
    Salam, T. A., A. B. Lumsden, W. D. Suggs, and D. N. Ku. Low shear stress promotes intimal hyperplasia thickening. J. Vasc. Invest. 2:12–22, 1996.Google Scholar
  86. 86.
    Sands, J. The role of color-flow Doppler ultrasound in the management of hemodialysis accesses. ASAIO J. 44:41–43, 1998.PubMedGoogle Scholar
  87. 87.
    Sands, J. J., P. A. Jabyac, C. L. Miranda, and B. J. Kapsick. Intervention based on monthly monitoring decreases hemodialysis access thrombosis. ASAIO J. 45:147–150, 1999.PubMedGoogle Scholar
  88. 88.
    Schaffer, D. A prospective randomized trial of 6 mm versus 4–7 mm PTFE grafts for hemodialysis access in diabetic patients. Vascular access for hemodialysis, Chicago: Precept Press, 91–94, 1997.Google Scholar
  89. 89.
    Schneditz, D., E. Wang, and N. W. Levin. Validation of haemodialysis recirculation and access blood flow measured by thermodilution. Nephrol. Dial. Transplant. 14:376–383, 1999.CrossRefPubMedGoogle Scholar
  90. 90.
    Schwab, S. J., J. R. Raymond, M. Saeed, G. E. Newman, P. A. Dennis, and R. R. Bellinger. Prevention of hemodialysis fistula thrombosis. Early detection of venous stenoses. Kidney Int. 36:701–711, 1989.Google Scholar
  91. 91.
    Schwab, S. J., M. J. Oliver, P. Suhocki, and R. McCann. Hemodialysis arteriovenous access: detection of stenosis and response to treatment by vascular access blood flow. Kidney Int. 59:358–362, 2001.CrossRefPubMedGoogle Scholar
  92. 92.
    Schwab, S. J., M. J. Oliver, P. Suhocki, and R. McCann. Hemodialysis arteriovenous access: detection of stenosis and response to treatment by vascular access blood flow. Kidney Int. 59:358–362, 2001.CrossRefPubMedGoogle Scholar
  93. 93.
    Sivanesan, S., T. V. How, and A. Bakran. Sites of stenosis in AV fistulae for haemodialysis access. Nephrol. Dial. Transplant. 14(1):118–120, 1999.CrossRefPubMedGoogle Scholar
  94. 94.
    Sivanesan, S., T. V. How, R. A. Black, and A. Bakran. Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J. Biomech. 32(9):915–925, 1999.CrossRefPubMedGoogle Scholar
  95. 95.
    Steuer, R. R., D. R. Miller, S. Zhang, D. A. Bell, and J. K. Leypoldt. Noninvasive transcutaneous determination of access blood flow rate. Kidney Int. 60:284–291, 2001.CrossRefPubMedGoogle Scholar
  96. 96.
    Sutera, S. P. Flow-induced trauma to blood cells. Circulat. Res. 41:2–8, 1977.PubMedGoogle Scholar
  97. 97.
    Tang, D., J. Yang, C. Yang, and D. N. Ku. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. J. Biomech. Eng. Trans. ASME 121(5): 494–501, 1999.Google Scholar
  98. 98.
    Taylor, R. S., A. Loh, R. J. McFarland, M. Cox, and J. F. Chester. Improved Technique for Polytetrafluoroethylene Bypass-Grafting - Long-Term Results Using Anastomotic Vein Patches. Br. J. Surg. 79(4):348–354, 1992.Google Scholar
  99. 99.
    Taylor, S. M., G. L. Eaves, D. A. Weatherford, J. C. McAlhany, H. E. Russell, E. M, Langan. Results and complications of arteriovenous access dialysis grafts in the lower extremity: A five year review. Am. Surg. 62(3):188–191, 1996.PubMedGoogle Scholar
  100. 100.
    Tonelli, M., K. Jindal, D. Hirsch, S. Taylor, C. Kane, and S. Henbrey. Screening for subclinical stenosis in native vessel arteriovenous fistulae. J. Am. Soc. Nephrol. 12:1729–1733, 2001.PubMedGoogle Scholar
  101. 101.
    Tordoir, J. H. Long-term follow-up of the polytetrafluoroethylene (PTFE) prosthesis as an arieriovenous fistula for haemodialysis. Eur. J. Vasc. Surg. 2(1):3–7, 1988.CrossRefPubMedGoogle Scholar
  102. 102.
    Tordoir, J. H. M., H. G. Debruin, H. Hoeneveld, B. C. Eikelboom, and P. Kitslaar. Duplex Ultrasound Scanning in the Assessment ofArteriovenous-Fistulas Created for Hemodiafysis Access - Comparison with Digital Subtraction Angiography. J. Vasc. Surg. 10(2):122–128, 1989.CrossRefPubMedGoogle Scholar
  103. 103.
    Turmel-Rodrigues, L., J. Pengloan, H. Rodrigue, G. Brillet, A. Lataste, D. Pierre, J. L. Jourdan, and D. Blanchard. Treatment of failed native arteriovenous fistulae for hemodialysis by interventional radiology. Kidney Int. 57(3):1124–1140, 2000.CrossRefPubMedGoogle Scholar
  104. 104.
    Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Comparison of the hemodynamics in straight and tapered hemodialysis grafts by means of CFD. J. Biomech., in press.Google Scholar
  105. 105.
    Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Assessment of stenosis in vascular access grafts. Int. J. Artif. Organs 28(7):617–622, 2004.CrossRefGoogle Scholar
  106. 106.
    Van Tricht, L., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics in a compliant In Vitro model of a Straight versus Tapered PTFE Arteriovenous Graft. J. Surg. Res. 116:297–304, 2004.CrossRefPubMedGoogle Scholar
  107. 107.
    Van Waeleghem, J. P., M. M. Elseviers, and E. J. Lindley. Management of vascular access in Europe. Part I: A study of centre based policies. EDTNA/ERCA J. 4:8–34, 2000.Google Scholar
  108. 108.
    Wang, E., D. Schneditz, C. Nepomuceno, V. Lavarias, K. Martin, A. T. Morris, and N. W. Levin. Predictive value of access blood flow in detecting access thrombosis. ASAIO J. 44:M555–M558, 1998.PubMedGoogle Scholar
  109. 109.
    Winsett, O. E., and F. J. Wolma. Complications of vascular access for hemodialysis. Southern Med. J. 78(5):513–517, 1985.Google Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Ilse Van Tricht
    • 1
  • Dirk De Wachter
    • 2
  • Jan Tordoir
    • 3
  • Pascal Verdonck
    • 1
  1. 1.Hydraulics Laboratory, Institute Biomedical TechnologyGhent UniversityGhentBelgium
  2. 2.Federal Health Care Knowledge CentreBrusselsBelgium
  3. 3.Department of SurgeryAcademic Hospital MaastrichtThe Netherlands

Personalised recommendations