Annals of Biomedical Engineering

, Volume 33, Issue 10, pp 1387–1404 | Cite as

3-D Nanomechanics of an Erythrocyte Junctional Complex in Equibiaxial and Anisotropic Deformations

  • Carlos Vera
  • Robert Skelton
  • Frederic Bossens
  • Lanping Amy Sung
Article

Abstract

The erythrocyte membrane skeleton deforms constantly in circulation, but the mechanics of a junctional complex (JC) in the network is poorly understood. We previously proposed a 3-D mechanical model for a JC (Sung, L. A., and C. Vera. Protofilament and hexagon: A three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann Biomed Eng 31:1314–1326, 2003) and now developed a mathematical model to compute its equilibrium by dynamic relaxation. We simulated deformations of a single unit in the network to predict the tension of 6 αβ spectrin (Sp) (top, middle, and bottom pairs), and the attitude of the actin protofilament [pitch (θ), yaw (φ) and roll (ψ) angles]. In equibiaxial deformation, 6 Sp would not begin their first round of “single domain unfolding in cluster” until the extension ratio (λ) reach ~3.6, beyond the maximal sustainable λ of ~2.67. Before Sp unfolds, the protofilament would gradually raise its pointed end away from the membrane, while φ and ψ remain almost unchanged. In anisotropic deformation, protofilaments would remain tangent but swing and roll drastically at least once between λ i = 1.0 and ~2.8, in a deformation angle- and λ i -dependent fashion. This newly predicted nanomechanics in response to deformations may reveal functional roles previous unseen for a JC, and molecules associated with it, during erythrocyte circulation.

Keywords

Actin Nanomechanics Deformation Protofilament Spectrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almqvist, N., L. Backman, and S. Fredriksson. Imaging human erythrocyte spectrin with atomic force microscopy. Micron 25:227–232, 1994.CrossRefPubMedGoogle Scholar
  2. 2.
    Bennett, V., and A. J. Baines. Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues. Physiol. Rev. 81:1353–1392, 2001.PubMedGoogle Scholar
  3. 3.
    Bennett, V., and P. J. Stenbuck. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280:468–473, 1979.CrossRefPubMedGoogle Scholar
  4. 4.
    Bremer, A., and U. Aebi. The structure of the F-actin filament and the actin molecule. Curr. Opin. Cell Biol. 4:20–26, 1992.CrossRefPubMedGoogle Scholar
  5. 5.
    Bustamante, C., J. F. Marko, E. D. Siggia, and S. Smith. Entropic elasticity of lambda-phage DNA. Science 265:1599–600, 1994.PubMedGoogle Scholar
  6. 6.
    Byers, T. J., and D. Branton. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA 82:6153–6157, 1985.PubMedGoogle Scholar
  7. 7.
    Carrion-Vazquez, M., A. F. Oberhauser, T. E. Fisher, P. E. Marszalek, H. Li, and J. M. Fernandez. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74:63–91, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Chien, S., K.-L. P. Sung, R. Skalak, S. Usami, and A. Tozeren. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys. J. 24:463–487, 1978.PubMedGoogle Scholar
  9. 9.
    Chu, X., J. Chen, M. C. Reedy, C. Vera, K. L. Sung, and L. A. Sung. E-Tmod capping of actin filaments at the slow-growing end is required to establish mouse embryonic circulation. Am. J. Physiol. Heart. Circ. Physiol. 284:H1827–H1838, 2003.PubMedGoogle Scholar
  10. 10.
    Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.PubMedGoogle Scholar
  11. 11.
    Discher, D. E., and P. Carl. New insights into red cell network structure, elasticity, and spectrin unfolding–a current review. Cell Mol. Biol. Lett. 6:593–606, 2001.PubMedGoogle Scholar
  12. 12.
    Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.PubMedGoogle Scholar
  13. 13.
    Evans, E. A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys. J. 13:941–954, 1973.PubMedGoogle Scholar
  14. 14.
    Evans, E. A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys. J. 30:265–284, 1980.PubMedGoogle Scholar
  15. 15.
    Evans, E. A., R. Waugh, and L. Melnik. Elastic area compressibility modulus of red cell membrane. Biophys. J. 16:585–595, 1976.PubMedGoogle Scholar
  16. 16.
    Fowler, V. M. Regulation of actin filament length in erythrocytes and striated muscle. Curr. Opin. Cell Biol. 8:86–96, 1996.CrossRefPubMedGoogle Scholar
  17. 17.
    Hansen, J. C., R. Skalak, S. Chien, and A. Hoger. An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys. J. 70:146–166, 1996.PubMedGoogle Scholar
  18. 18.
    Hansen, J. C., R. Skalak, S. Chien, and A. Hoger. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys. J. 72:2369–2381, 1997.PubMedGoogle Scholar
  19. 19.
    Harper, S. L., G. E. Begg, and D. W. Speicher. Role of terminal nonhomologous domains in initiation of human red cell spectrin dimerization. Biochemistry 40:9935–9943, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Kas, J., H. Strey, J. X. Tang, D. Finger, R. Ezzell, E. Sackmann, and P. A. Janmey. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys. J. 70:609–625, 1996.PubMedGoogle Scholar
  21. 21.
    Knowles, D. W., L. Tilley, N. Mohandas, and J. A. Chasis. Erythrocyte membrane vesiculation: Model for the molecular mechanism of protein sorting. Proc. Natl. Acad. Sci. USA 94:12969–12974, 1997.CrossRefPubMedGoogle Scholar
  22. 22.
    Law, R., S. Harper, D. W. Speicher, and D. E. Discher. Influence of lateral association on forced unfolding of antiparallel spectrin heterodimers. J. Biol. Chem. 279:16410–16416, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, J. C., and D. E. Discher. Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys. J. 81:3178–3192, 2001.PubMedGoogle Scholar
  24. 24.
    Lee, J. C., D. T. Wong, and D. E. Discher. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys. J. 77:853–864, 1999.PubMedGoogle Scholar
  25. 25.
    Liu, S. C., L. H. Derick, and J. Palek. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104:527–536, 1987.CrossRefPubMedGoogle Scholar
  26. 26.
    McGough, A. M., and R. Josephs. On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc. Natl. Acad. Sci. USA 87:5208–5212, 1990.PubMedGoogle Scholar
  27. 27.
    Onuma, E. K., P. S. Amenta, K. Ramaswamy, J. J. Lin, and K. M. Das. Autoimmunity in ulcerative colitis (UC): A predominant colonic mucosal B cell response against human tropomyosin isoform 5. Clin. Exp. Immunol. 121:466–471, 2000.CrossRefPubMedGoogle Scholar
  28. 28.
    Picart, C., P. Dalhaimer, and D. E. Discher. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Biophys. J. 79:2987–3000, 2000.PubMedGoogle Scholar
  29. 29.
    Picart, C., and D. E. Discher. Actin protofilament orientation at the erythrocyte membrane. Biophys. J. 77:865–878, 1999.PubMedGoogle Scholar
  30. 30.
    Reid, M. E., Y. Takakuwa, J. Conboy, G. Tchernia, and N. Mohandas. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood 75:2229–2234, 1990.PubMedGoogle Scholar
  31. 31.
    Rief, M., J. Pascual, M. Saraste, and H. E. Gaub. Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J. Mol. Biol. 286:553–561, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Riley, W. F., and L. D. Sturges. Engineering Mechanics: Dynamics. New York: Wiley, 1995.Google Scholar
  33. 33.
    Shen, B. W., R. Josephs, and T. L. Steck. Ultrastructure of the intact skeleton of the human erythrocyte membrane. J. Cell Biol. 102:997–1006, 1986.CrossRefPubMedGoogle Scholar
  34. 34.
    Shoemake, K. Animating rotation with quaternion curves. Comp Graph (Proc. SIGGRAPH) 19:245–254, 1985.Google Scholar
  35. 35.
    Smith, B. L., T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, and P.K. Hansma. Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites. Nature 399:761–763, 1999.CrossRefGoogle Scholar
  36. 36.
    Speicher, D. W., and V. T. Marchesi. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311:177–180, 1984.CrossRefPubMedGoogle Scholar
  37. 37.
    Sung, K.-L. P., G. W. Schmid-Schönbein, R. Skalak, G. B. Schuessler, S. Usami, and S. Chien. Influence of physicochemical factors on rheology of human neutrophils. Biophys. J. 39:101–106, 1982.PubMedGoogle Scholar
  38. 38.
    Sung, L. A., and C. Vera. Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann. Biomed. Eng. 31:1314–1326, 2003.CrossRefPubMedGoogle Scholar
  39. 39.
    Tozeren, A., R. Skalak, K. L. Sung, and S. Chien. Viscoelastic behavior of erythrocyte membrane. Biophys. J. 39:23–32, 1982.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Carlos Vera
    • 1
  • Robert Skelton
    • 2
  • Frederic Bossens
    • 2
  • Lanping Amy Sung
    • 1
    • 3
  1. 1.Department of BioengineeringJacobs School of Engineering, University of CaliforniaSan Diego, La Jolla
  2. 2.Department of Mechanical and Aerospace EngineeringJacobs School of Engineering, University of CaliforniaSan Diego, La Jolla
  3. 3.Department of Bioengineering, and Center for Molecular GeneticsUniversity of CaliforniaLa Jolla

Personalised recommendations