Advertisement

Annals of Biomedical Engineering

, Volume 33, Issue 10, pp 1312–1318 | Cite as

Zonal Uniformity in Mechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Canine Chondrons Isolated by Cartilage Homogenization

  • Farshid Guilak
  • Leonidas G. Alexopoulos
  • Mansoor A. Haider
  • H. Ping Ting-Beall
  • Lori A. Setton
Article

Abstract

The pericellular matrix (PCM) is a region of tissue that surrounds chondrocytes in articular cartilage and together with the enclosed cells is termed the chondron. Previous studies suggest that the mechanical properties of the PCM, relative to those of the chondrocyte and the extracellular matrix (ECM), may significantly influence the stress–strain, physicochemical, and fluid-flow environments of the cell. The aim of this study was to measure the biomechanical properties of the PCM of mechanically isolated chondrons and to test the hypothesis that the Young's modulus of the PCM varies with zone of origin in articular cartilage (surface vs. middle/deep). Chondrons were extracted from articular cartilage of the canine knee using mechanical homogenization, and the elastic properties of the PCM were determined using micropipette aspiration in combination with theoretical models of the chondron as an elastic incompressible half-space, an elastic compressible bilayer, or an elastic compressible shell. The Young's modulus of the PCM was significantly higher than that reported for isolated chondrocytes but over an order of magnitude lower than that of the cartilage ECM. No significant differences were observed in the Young's modulus of the PCM between surface zone (24.0 ± 8.9 kPa) and middle/deep zone cartilage (23.2 ± 7.1 kPa). In combination with previous theoretical biomechanical models of the chondron, these findings suggest that the PCM significantly influences the mechanical environment of the chondrocyte in articular cartilage and therefore may play a role in modulating cellular responses to micromechanical factors.

Keywords

Cartilage Cell Mechanics Mechanical properties Osteoarthritis Pericellular Collagen Micropipette aspiration Biomechanics Chondron Collagen type VI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexopoulos, L. G., M. A. Haider, T. P. Vail, and F. Guilak. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng. 125:323–333, 2003.CrossRefPubMedGoogle Scholar
  2. 2.
    Alexopoulos, L. G., L. A. Setton, and F. Guilak. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomateriala 1:317–325, 2005.CrossRefGoogle Scholar
  3. 3.
    Alexopoulos, L. G., G. M. Williams, M. L. Upton, L. A. Setton, and F. Guilak. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J. Biomech. 38:509–517, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Aoki, T., T. Ohashi, T. Matsumoto, and M. Sato. The pipette aspiration applied to the local stiffness measurement of soft tissues. Ann. Biomed. Eng. 25:581–587, 1997.PubMedGoogle Scholar
  5. 5.
    Aydelotte, M. B., and K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18:205–222, 1988.PubMedGoogle Scholar
  6. 6.
    Baer, A. E., T. A. Laursen, F. Guilak, and L. A. Setton. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. J. Biomech. Eng. 125:1–11, 2003.CrossRefPubMedGoogle Scholar
  7. 7.
    Baer, A. E., and L. A. Setton. The micromechanical environment of intervertebral disc cells: Effect of matrix anisotropy and cell geometry predicted by a linear model. J. Biomech. Eng. 122:245–251, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Benninghoff, A. Form und bau der Gelenkknorpel in ihren Beziehungen Zur Funktion. Zweiter Teil: der Aufbau des Gelenkknorpels in sienen Bezienhungen zur Funktion 2:783, 1925.Google Scholar
  9. 9.
    Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108:1497–1508, 1995.PubMedGoogle Scholar
  10. 10.
    Chen, S. S., Y. H. Falcovitz, R. Schneiderman, A. Maroudas, and R. L. Sah. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: Relationship to fixed charge density. Osteoarthritis Cartilage 9:561–569, 2001.CrossRefPubMedGoogle Scholar
  11. 11.
    Eggli, P. S., W. Herrmann, E. B. Hunziker, and R. K. Schenk. Matrix compartments in the growth plate of the proximal tibia of rats. Anat. Rec. 211:246–257, 1985.CrossRefPubMedGoogle Scholar
  12. 12.
    Greco, F., N. Specchia, F. Falciglia, A. Toesca, and S. Nori. Ultrastructural analysis of the adaptation of articular cartilage to mechanical stimulation. Ital. J. Orthop. Traumatol. 18:311–321, 1992.PubMedGoogle Scholar
  13. 13.
    Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1542, 1995.CrossRefPubMedGoogle Scholar
  14. 14.
    Guilak, F., G. R. Erickson, and H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.PubMedGoogle Scholar
  15. 15.
    Guilak, F., W. R. Jones, H. P. Ting-Beall, and G. M. Lee. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage 7:59–70, 1999.CrossRefPubMedGoogle Scholar
  16. 16.
    Guilak, F., B. C. Meyer, A. Ratcliffe, and V. C. Mow. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2:91–101, 1994.CrossRefPubMedGoogle Scholar
  17. 17.
    Guilak, F., and V. C. Mow. The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Guilak, F., A. Ratcliffe, and V. C. Mow. The mechanical environment of the chondrocyte: Effects of cell shape and intercellular spacing. In: Transactions of the Combined Meeting of the Orthopaedic Research Societies of USA, Japan, and Canada 1:171, 1991.Google Scholar
  19. 19.
    Guilak, F., A. Ratcliffe, and V. C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J. Orthop. Res. 13:410–421, 1995.CrossRefPubMedGoogle Scholar
  20. 20.
    Guilak, F., R. L. Sah, and L. A. Setton. Physical regulation of cartilage metabolism. In: Basic Orthopaedic Biomechanics, edited by W. C. Hayes. Philadelphia: Lippincott-Raven, 1997, pp. 179–207.Google Scholar
  21. 21.
    Haider, M. A. A radial biphasic model for local cell-matrix mechanics in articular cartilage. SIAM J. Appl. Math. 64:1588–1608, 2004.CrossRefGoogle Scholar
  22. 22.
    Haider, M. A., and F. Guilak. An axisymmetric boundary integral model for incompressible linear viscoelasticity: Application to the micropipette aspiration contact problem. J. Biomech. Eng. 122:236–244, 2000.CrossRefPubMedGoogle Scholar
  23. 23.
    Haider, M. A., and F. Guilak. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. J. Biomech. Eng. 124:586–595, 2002.CrossRefPubMedGoogle Scholar
  24. 24.
    Helminen, H. J., J. Jurvelin, I. Kiviranta, K. Paukkonen, A. M. Saamanen, and M. Tammi. Joint loading effects on articular cartilage: A historical review. In: Joint Loading: Biology and Health of Articular Structures, edited by H. J. Helminen, I. Kiviranta, M. Tammi, A. M. Saamanen, K. Paukkonen, and J. Jurvelin. Bristol: Wright and Sons, 1987, pp. 1–46.Google Scholar
  25. 25.
    Hing, W. A., A. F. Sherwin, and C. A. Poole. The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthritis Cartilage 10:297–307, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Mechanical properties of human chondrocytes and chondrons from normal and osteoarthritic cartilage. Trans. Orthop. Res. Soc. 21:199, 1997.Google Scholar
  28. 28.
    Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, Y. J., L. J. Bonassar, and A. J. Grodzinsky. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28:1055–1066, 1995.CrossRefPubMedGoogle Scholar
  30. 30.
    Knight, M. M., D. A. Lee, and D. L. Bader. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim. Biophys. Acta 1405:67–77, 1998.CrossRefPubMedGoogle Scholar
  31. 31.
    Knight, M. M., J. M. Ross, A. F. Sherwin, D. A. Lee, D. L. Bader, and C. A. Poole. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim. Biophys. Acta 1526:141–146, 2001.PubMedGoogle Scholar
  32. 32.
    Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334–341, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Krishnan, R., S. Park, F. Eckstein, and G. A. Ateshian. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J. Biomech. Eng. 125:569–577, 2003.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee, G. M., C. A. Poole, S. S. Kelley, J. Chang, and B. Caterson. Isolated chondrons: A viable alternative for studies of chondrocyte metabolism in vitro. Osteoarthritis Cartilage 5:261–274, 1997.CrossRefPubMedGoogle Scholar
  35. 35.
    Librizzi, N. N., W. R. Jones, D. S. Howell, L. A. Setton, and F. Guilak. Alterations in the viscoelastic properties of the pericellular matrix of articular cartilage in a canine model of joint disuse. Trans. Orthop. Res. Soc. 23:483, 1998.Google Scholar
  36. 36.
    Mow, V. C., C. C. Wang, and C. T. Hung. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7:41–58, 1999.CrossRefPubMedGoogle Scholar
  37. 37.
    Poole, C. A. Chondrons: The chondrocyte and its pericellular microenvironment. In: Articular Cartilage and Osteoarthritis, edited by V. C. Hascall. New York, London: Academic Press, 1992, pp. 201–220.Google Scholar
  38. 38.
    Poole, C. A. Articular cartilage chondrons: Form, function and failure. J. Anat. 191(Pt. 1):1–13, 1997.CrossRefPubMedGoogle Scholar
  39. 39.
    Poole, C. A., S. Ayad, and J. R. Schofield. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J. Cell Sci. 90(Pt. 4):635–643, 1988.PubMedGoogle Scholar
  40. 40.
    Poole, C. A., M. H. Flint, and B. W. Beaumont. Chondrons in cartilage: Ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J. Orthop. Res. 5:509–522, 1987.CrossRefPubMedGoogle Scholar
  41. 41.
    Poole, C. A., T. Honda, S. J. Skinner, J. R. Schofield, K. F. Hyde, and H. Shinkai. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons. Connect. Tissue Res. 24:319–330, 1990.PubMedGoogle Scholar
  42. 42.
    Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.CrossRefPubMedGoogle Scholar
  43. 43.
    Schinagl, R. M., D. Gurskis, A. C. Chen, and R. L. Sah. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506, 1997.CrossRefPubMedGoogle Scholar
  44. 44.
    Smirzai, J. A. The concept of the chondron as a biomechanical unit. In: Biopolymer und Biomechanik von Bindegewebssystemen, edited by F. Hartmann. Berlin: Academic Press, 1974, p. 87.Google Scholar
  45. 45.
    Stockwell, R. A. Biology of Cartilage Cells. Cambridge: Cambridge University Press, 1979.Google Scholar
  46. 46.
    Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110:190–199, 1988.PubMedGoogle Scholar
  47. 47.
    Trickey, W. R., F. T. P. Baaijens, T. A. Laursen, L. G. Alexopoulos, and F. Guilak. Determination of the Poisson's ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech., in press (doi: 10.1016/j.jbiomech.2004.11.006).Google Scholar
  48. 48.
    Trickey, W. R., G. M. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898, 2000.CrossRefPubMedGoogle Scholar
  49. 49.
    Valhmu, W. B., E. J. Stazzone, N. M. Bachrach, F. Saed-Nejad, S. G. Fischer, V. C. Mow, and A. Ratcliffe. Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch. Biochem. Biophys. 353:29–36, 1998.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang, C. C., X. E. Guo, D. Sun, V. C. Mow, G. A. Ateshian, and C. T. Hung. The functional environment of chondrocytes within cartilage subjected to compressive loading: A theoretical and experimental approach. Biorheology 39:11–25, 2002.PubMedGoogle Scholar
  51. 51.
    Wang, C. C.-B., C. T. Hung, and V. C. Mow. Analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34(1):75–84, 2001.CrossRefPubMedGoogle Scholar
  52. 52.
    Wong, M., P. Wuethrich, M. D. Buschmann, P. Eggli, and E. Hunziker. Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J. Orthop. Res. 15:189–196, 1997.CrossRefPubMedGoogle Scholar
  53. 53.
    Wu, J. Z., W. Herzog, and M. Epstein. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading. J. Biomech. 32:563–572, 1999.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Farshid Guilak
    • 1
  • Leonidas G. Alexopoulos
    • 1
  • Mansoor A. Haider
    • 2
  • H. Ping Ting-Beall
    • 1
  • Lori A. Setton
    • 1
  1. 1.Orthopaedic Research Laboratories, Departments of Surgery, Biomedical Engineering, and Mechanical Engineering & Materials ScienceDuke University Medical CenterDurham
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations