Annals of Biomedical Engineering

, Volume 33, Issue 5, pp 567–576 | Cite as

Fluid-Structure Coupled CFD Simulation of the Left Ventricular Flow During Filling Phase

  • Yongguang Cheng
  • Herbert Oertel
  • Torsten Schenkel


The fluid-structure coupled simulation of the heart, though at its developing stage, has shown great prospect in heart function investigations and clinical applications. The purpose of this paper is to verify a commercial software based fluid-structure interaction scheme for the left ventricular filling. The scheme applies the finite volume method to discretize the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations for the fluid while using the nonlinear finite element method to model the structure. The coupling of the fluid and structure is implemented by combining the fluid and structure equations as a unified system and solving it simultaneously at every time step. The left ventricular filling flow in a three-dimensional ellipsoidal thin-wall model geometry of the human heart is simulated, based on a prescribed time-varying Young’s modulus. The coupling converges smoothly though the deformation is very large. The pressure–volume relation of the model ventricle, the spatial and temporal distributions of pressure, transient velocity vectors as well as vortex patterns are analyzed, and they agree qualitatively and quantitatively well with the existing data. This preliminary study has verified the feasibility of the scheme and shown the possibility to simulate the left ventricular flow in a more realistic way by adding a myocardial constitutive law into the model and using a more realistic heart geometry.


Fluid-structure interaction Computational fluid dynamics Left ventricular filling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baccani, B., F. Domenichini, G. Pedrizzetti, and G. Tonti. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35(5):665–671, 2002a.CrossRefGoogle Scholar
  2. 2.
    Baccani, B., F. Domenichini, and G. Pedrizzetti. Vortex dynamics in a model left ventricle during filling. Eur. J. Mech. B/Fluids 21:527–543, 2002b.CrossRefGoogle Scholar
  3. 3.
    Baccani, B., F. Domenichini, and G. Pedrizzetti. Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36:355–361, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Chahboune, B., and J. M. Crolet. Numerical simulation of the blood-wall interaction in the human left ventricle. Eur. Phys. J. –Appl. Phys. 2:291–297, 1998.CrossRefGoogle Scholar
  5. 5.
    Courtois, M., S. J. Kovacs, Jr., and P. A. Ludbrook. Transmitral pressure-flow velocity relation: Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671, 1988.PubMedGoogle Scholar
  6. 6.
    Ebbers, T., L. Wigström, A. F. Bolger, B. Wranne, and M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124:288–293, 2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Fung, Y. C. Biomechanics: Circulation. 2nd ed. Berlin, Heidelberg, New York: Springer, 1997.Google Scholar
  8. 8.
    Gibson, D. G., and D. P. Francis. Clinical assesment of left ventricular diastolic function. Heart 89:231–238, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.CrossRefPubMedGoogle Scholar
  10. 10.
    Keber, R. Computational fluid dynamics simulation of human left ventricular flow. PhD Dissertation, University of Karlsruhe, Karlsruhe. (In German), 2003.Google Scholar
  11. 11.
    Lemmon, J. D., and A. P. Yoganathan. Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J. Biomech. Eng. 122:109–117, 2000a.CrossRefGoogle Scholar
  12. 12.
    Lemmon, J. D., and A. P. Yoganathan. Computational modeling of left heart diastolic function: Examination of ventricular dysfunction. J. Biomech. Eng. 122:297–303, 2000b.CrossRefGoogle Scholar
  13. 13.
    Lin, D. H. S., and F. C. P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120:504–517, 1998.PubMedGoogle Scholar
  14. 14.
    Long, Q., R. Merrifield, G. Z. Yang, X. Y. Xu, P. J. Kilner, and D. N. Firman. The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125:922–927, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    McQueen, D. M., and C. S. Peskin. Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3):213–236, 1997.CrossRefGoogle Scholar
  16. 16.
    McQueen, D. M., and C. S. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34:56–60, 2000.Google Scholar
  17. 17.
    Nakamura, M., S. Wada, T. Mikami, A. Kitabatake, and T. Karino. A computational fluid mechanical study on the effects of opening and closing of the mitral orifice on a transmitral flow velocity profile and an early diastolic intraventricular flow. JSME Int. J. Ser. C –Mech. Syst. Mach. Elem. Manufact. 45:913–922, 2002.Google Scholar
  18. 18.
    Nakamura, M., S. Wada, T. Mikami, A. Kitabatake, and T. Karino. Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms. Biomech. Model. Mechanobiol. 2:59–72, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Nash, M. P., and P. J. Hunter. Computational mechanics of the heart: From tissue structure to ventricular function. J. Elast. 61(1/3):113–141, 2000.CrossRefGoogle Scholar
  20. 20.
    Nikolic, S. D., M. P. Feneley, O. E. Pajaro, J. S. Rankin, and E. L. Yellin. Origin of regional pressure gradients in the left ventricle during early diastole. Am. J. Physiol.-Heart Circulatory Physiol. 37(2):H550–H557, 1995.Google Scholar
  21. 21.
    Peskin, C. S., and D. M. McQueen. Fluid dynamics of the heart and its valves, case studies in mathematical modeling. In: Ecology, Physiology and Cell Biology, edited by H. G. Othmer. New Jersey: Prentice-Hall, 1996, pp. 309–337.Google Scholar
  22. 22.
    Saber, N. R., A. D. Gosman, N. B. Wood, P. J. Kilner, C. L. Charrier, and D. N. Firmin. Computational flow modeling of the left ventricle based on in vivo MRI data: Initial experience. Ann. Biomed. Eng. 29(4):275–283, 2001.CrossRefPubMedGoogle Scholar
  23. 23.
    Saber, N. R., N. B. Wood, A. D. Gosman, R. D. Merrifield, G. Z. Yang, C. L. Charrier, P. D. Gatehouse, and D. N. Firmin. Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann. Biomed. Eng. 31(1):42–52, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Schoephoerster, R. T., C. L. Silva, and G. Ray. Evaluation of ventricular function based on simulated systolic flow dynamics computed from regional wall motion. J. Biomech. 27:125–136, 1994.CrossRefPubMedGoogle Scholar
  25. 25.
    Souli, M., A. Ouahsine, and L. Lewin. ALE formulation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 190(5–7):659–676, 2001.CrossRefGoogle Scholar
  26. 26.
    Sunagawa, K., and K. Sagawa. Models of ventricular contraction based on time-varying elastance. Crit. Rev. Biomed. Eng. 7:193–288, 1982.PubMedGoogle Scholar
  27. 27.
    Taylor, T. W., H. Okino, and T. Yamaguchi. Three-dimensional analysis of left ventricular ejection using computational fluid dynamics. J. Biomech. Eng. 116:127–130, 1994.PubMedGoogle Scholar
  28. 28.
    Vesier, C., J. D. Lemmon, R. A. Levine, and A. P. Yoganathan. A three-dimensional computational model of a thin-walled left ventricle. In: Proceedings on IEEE Supercomputing ‘92, 16–20 November, pp. 73–82, 1992.Google Scholar
  29. 29.
    Vierendeels, J. A., K. Riemslagh, and E. Dick. Computer simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122:667–674, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Vierendeels, J. A., K. Riemslagh, E. Dick, and P. Verdonck. Computer simulation of left ventricular filling flow: Impact study on echocardiograms. Comput. Cardiol. 26:177–180, 1999.Google Scholar
  31. 31.
    Waite, L. R., S. Schulz, G. Szabo, and C. F. Vahl. A lumped parameter model of left ventricular filling—pressure waveforms. Biomed. Sci. Instrum. 36:75–80, 2000.PubMedGoogle Scholar
  32. 32.
    Watanabe, H., T. Hisada, S. Sugiura, J. Okada, and H. Fukunari. Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid-structure interaction finite element method. JSME Int. J. Ser. C –Mech. Syst. Mach. Elem. Manufact. 45(4):1003–1012, 2002.Google Scholar
  33. 33.
    Zhang, H., and K. J. Bathe. Direct and iterative computing of fluid flows fully coupled with structures. In: Computational Fluid and Solid Mechanics, edited by K. J. Bathe, Elsevier Science, 2001.Google Scholar
  34. 34.
    Zhang, Q., and T. Hisada. Analysis of fluid-structure interaction problems with structural bucking and large domain changes by ALE finite element method. Comput. Methods Appl. Mech. Eng. 190:6341–6357, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Yongguang Cheng
    • 1
  • Herbert Oertel
    • 2
  • Torsten Schenkel
    • 2
  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  2. 2.Institute of Fluid MechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations