Annals of Biomedical Engineering

, Volume 33, Issue 7, pp 888–896 | Cite as

Deficiency of Actinin-Associated LIM Protein Alters Regional Right Ventricular Function and Hypertrophic Remodeling

  • Ilka Lorenzen-Schmidt
  • Andrew D. McCulloch
  • Jeffrey H. Omens


Targeted deletion of actinin-associated LIM protein (ALP) in mice leads to right ventricular (RV) dysplasia and a mild RV cardiomyopathy. Although the phenotype has been thoroughly characterized, the mechanisms leading from the cytoskeletal defect to the disease are unclear. We hypothesized that ALP deficiency may be associated with (1) changes in regional systolic dysfunction and (2) regional dysregulation of hypertrophic growth, in accordance with the restricted expression of ALP in the outflow tract of the RV. We examined RV regional epicardial systolic strains with respect to end-diastole in ALP knockout (ALPKO) mice and wild-type controls using an open-chest preparation. Strain components were consistently lower in the ALPKO mice than wild-type controls (second principal strain E2: p = 0.05). RV pressure was slightly but not significantly lower in ALPKO mice as well. To assess regional growth, geometric remodeling was analyzed in ALPKO and wild-type mice after 4 weeks of chronic hypoxia (11% oxygen). The average amount of RV wall thickening in response to hypoxia was reduced to 11% in the ALPKO mice compared with 44% in the wild-type controls. In summary, the results are consistent with the view that disruption of ALP is associated with diminished RV contractile function as well as altered hypertrophic remodeling.


cardiac function mice cytoskeleton cardiomyopathy hypoxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudouin, S. V., and N. T. Bateman. Contractility of papillary muscle from rats exposed to 28 days of hypoxia, hypercapnia, and hypoxia with hypercapnia. Thorax 44:808–811, 1989.PubMedGoogle Scholar
  2. 2.
    Brown, S., I. D. Coghill, M. J. McGrath, and P. A. Robinson. Role of LIM domains in mediating signaling protein interactions. IUBMB Life 51:359–364, 2001.PubMedGoogle Scholar
  3. 3.
    Chuong, C. J., M. S. Sacks, G. Templeton, F. Schwiep, and R. L. Johnson Jr. Regional deformation and contractile function in canine right ventricular free wall. Am. J. Physiol. 260:H1224–H1235, 1991.PubMedGoogle Scholar
  4. 4.
    Corrado, D., G. Fontaine, F. I. Marcus, W. J. McKenna, A. Nava, G. Thiene, and T. Wichter. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: Need for an international registry. Study Group on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy of the Working Groups on Myocardial and Pericardial Disease and Arrhythmias of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the World Heart Federation. Circulation 101:E101–E106, 2000.PubMedGoogle Scholar
  5. 5.
    Cowin, P., H. P. Kapprell, W. W. Franke, J. Tamkun, and R. O. Hynes. Plakoglobin: A protein common to different kinds of intercellular adhering junctions. Cell 46:1063–1073, 1986.CrossRefPubMedGoogle Scholar
  6. 6.
    Eddahibi, S., N. Hanoun, L. Lanfumey, K. P. Lesch, B. Raffestin, M. Hamon, and S. Adnot. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 105:1555–1562, 2000.PubMedGoogle Scholar
  7. 7.
    Fagan, K. A., B. W. Fouty, R. C. Tyler, K. G. Morris Jr., L. K. Hepler, K. Sato, T. D. LeCras, S. H. Abman, H. D. Weinberger, P. L. Huang, I. F. McMurtry, and D. M. Rodman. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J. Clin. Invest. 103:291–299, 1999.PubMedGoogle Scholar
  8. 8.
    Fan, J. S., and M. Zhang. Signaling complex organization by PDZ domain proteins. Neurosignals 11:315–321, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Fontaine, G., F. Fontaliran, and R. Frank. Arrhythmogenic right ventricular cardiomyopathies: Clinical forms and main differential diagnoses. Circulation 97:1532–1535, 1998.PubMedGoogle Scholar
  10. 10.
    Goldsmith, E. C., and T. K. Borg. The dynamic interaction of the extracellular matrix in cardiac remodeling. J. Card. Fail 8:S314–S318, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Karlon, W. J., A. D. McCulloch, J. W. Covell, J. J. Hunter, and J. H. Omens. Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. Am. J. Physiol. 278:H898–906, 2000.Google Scholar
  12. 12.
    Klinger, J. R., R. D. Petit, L. A. Curtin, R. R. Warburton, D. S. Wrenn, M. E. Steinhelper, L. J. Field, and N. S. Hill. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J. Appl. Physiol. 75:198–205, 1993.PubMedGoogle Scholar
  13. 13.
    Knoll, R., M. Hoshijima, H. M. Hoffman, V. Person, I. Lorenzen-Schmidt, M. L. Bang, T. Hayashi, N. Shiga, H. Yasukawa, W. Schaper, W. McKenna, M. Yokoyama, N. J. Schork, J. H. Omens, A. D. McCulloch, A. Kimura, C. C. Gregorio, W. Poller, J. Schaper, H. P. Schultheiss, and K. R. Chien. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955, 2002.PubMedGoogle Scholar
  14. 14.
    Kumar, K., J. E. Lock, and T. Geva. Apical muscular ventricular septal defects between the left ventricle and the right ventricular infundibulum. Diagnostic and interventional considerations. Circulation 95:1207–1213, 1997.PubMedGoogle Scholar
  15. 15.
    Kumar, R., R. Wagner, M. L. Slankard, and W. H. Abelmnn. Left and right ventricular pressures in mice. J. Appl. Physiol. 30:424–426, 1971.PubMedGoogle Scholar
  16. 16.
    Lewis, J. E., J. K. Wahl III, K. M. Sass, P. J. Jensen, K. R. Johnson, and M. J. Wheelock. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136:919–934, 1997.PubMedGoogle Scholar
  17. 17.
    McKoy, G., N. Protonotarios, A. Crosby, A. Tsatsopoulou, A. Anastasakis, A. Coonar, M. Norman, C. Baboonian, S. Jeffery, and W. J. McKenna. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355:2119–2124, 2000.PubMedGoogle Scholar
  18. 18.
    Meier, G. D., A. A. Bove, W. P. Santamore, and P. R. Lynch. Contractile function in canine right ventricle. Am. J. Physiol. 239: H794–H804, 1980.PubMedGoogle Scholar
  19. 19.
    Pascaud, M. A., F. Griscelli, W. Raoul, E. Marcos, P. Opolon, B. Raffestin, M. Perricaudet, S. Adnot, and S. Eddahibi. Lung overexpression of angiostatin aggravates pulmonary hypertension in chronically hypoxic mice. Am. J. Respir. Cell Mol. Biol. 29:449–457, 2003.PubMedGoogle Scholar
  20. 20.
    Pashmforoush, M., P. Pomies, K. L. Peterson, S. Kubalak, J. Ross Jr., A. Hefti, U. Aebi, M. C. Beckerle, and K. R. Chien. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat. Med. 7:591–597, 2001.PubMedGoogle Scholar
  21. 21.
    Raines, R. A., M. M. LeWinter, and J. W. Covell. Regional shortening patterns in canine right ventricle. Am. J. Physiol. 231:1395–1400, 1976.PubMedGoogle Scholar
  22. 22.
    Ross, R. S. The extracellular connections: The role of integrins in myocardial remodeling. J. Card. Fail. 8:S326–S331, 2002.PubMedGoogle Scholar
  23. 23.
    Santamore, W. P., G. D. Meier, and A. A. Bove. Effects of hemodynamic alterations on wall motion in the canine right ventricle. Am. J. Physiol. 236:H254–H262, 1979.PubMedGoogle Scholar
  24. 24.
    Steudel, W., M. Scherrer-Crosbie, K. D. Bloch, J. Weimann, P. L. Huang, R. C. Jones, M. H. Picard, and W. M. Zapol. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J. Clin. Invest. 101:2468–2477, 1998.PubMedGoogle Scholar
  25. 25.
    van Praagh, R., W. M. Layton, and S. van Praagh. The morphogenesis of normal and abnormal relationships between the great arteries and the ventricles: Pathological and experimental data. In: van Praagh, R, and Takao, A (Eds.) Etiology and Morphogenesis of Congenital Heart Disease. New York: Mt Kisco, Futura, 1980, pp. 271–316.Google Scholar
  26. 26.
    van Suylen, R. J., W. M. Aartsen, J. F. Smits, and M. J. Daemen. Dissociation of pulmonary vascular remodeling and right ventricular pressure in tissue angiotensin-converting enzyme-deficient mice under conditions of chronic alveolar hypoxia. Am. J. Respir. Crit. Care Med. 163:1241–1245, 2001.PubMedGoogle Scholar
  27. 27.
    Waldman, L. K., J. J. Allen, R. S. Pavelec, and A. D. McCulloch. Distributed mechanics of the canine right ventricle: Effects of varying preload. J. Biomech. 29:373–381, 1996.PubMedGoogle Scholar
  28. 28.
    Wong, P. C., S. P. Sanders, R. A. Jonas, S. D. Colan, I. A. Parness, T. Geva, R. Van Praagh, and P. J. Spevak. Pulmonary valve-moderator band distance and association with development of double-chambered right ventricle. Am. J. Cardiol. 68:1681–1686, 1991.PubMedGoogle Scholar
  29. 29.
    Zhao, L., N. A. Mason, J. W. Strange, H. Walker, and M. R. Wilkins. Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity. Circulation 107:234–237, 2003.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Ilka Lorenzen-Schmidt
    • 1
  • Andrew D. McCulloch
    • 1
  • Jeffrey H. Omens
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of California San DiegoLa Jolla
  2. 2.UCSD Department of Medicine 0613JLa Jolla

Personalised recommendations