Annals of Biomedical Engineering

, Volume 33, Issue 6, pp 829–840 | Cite as

A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control

  • Katherine R. S. Holzbaur
  • Wendy M. MurrayEmail author
  • Scott L. Delp


Biomechanical models of the musculoskeletal system are frequently used to study neuromuscular control and simulate surgical procedures. To be broadly applicable, a model must be accessible to users, provide accurate representations of muscles and joints, and capture important interactions between joints. We have developed a model of the upper extremity that includes 15 degrees of freedom representing the shoulder, elbow, forearm, wrist, thumb, and index finger, and 50 muscle compartments crossing these joints. The kinematics of each joint and the force-generating parameters for each muscle were derived from experimental data. The model estimates the muscle–tendon lengths and moment arms for each of the muscles over a wide range of postures. Given a pattern of muscle activations, the model also estimates muscle forces and joint moments. The moment arms and maximum moment-generating capacity of each muscle group (e.g., elbow flexors) were compared to experimental data to assess the accuracy of the model. These comparisons showed that moment arms and joint moments estimated using the model captured important features of upper extremity geometry and mechanics. The model also revealed coupling between joints, such as increased passive finger flexion moment with wrist extension. The computer model is available to researchers at


Computer simulation Upper limb Muscle Shoulder Elbow Wrist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amis, A. A., D. Dowson, and V. Wright. Analysis of elbow forces due to high-speed forearm movements. J. Biomech. 13:825–831, 1980.CrossRefPubMedGoogle Scholar
  2. 2.
    An, K. N., F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 14:659–669, 1981.CrossRefPubMedGoogle Scholar
  3. 3.
    An, K. N., Y. Ueba, E. Y. Chao, W. P. Cooney, and R. L. Linscheid Tendon excursion and moment arm of index finger muscles. J. Biomech. 16:419–425, 1983.CrossRefPubMedGoogle Scholar
  4. 4.
    Brand, P. W., and A. Hollister. Clinical Mechanics of the Hand, 2nd ed. St. Louis, MO: Mosby-Year Book, 1993, p. 386.Google Scholar
  5. 5.
    Buchanan, T. S. Evidence that maximum muscle stress is not a constant: Differences in specific tension in elbow flexors and extensors. Med. Eng. Phys. 17:529–536, 1995.CrossRefPubMedGoogle Scholar
  6. 6.
    Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng. 120:634–639, 1998.PubMedGoogle Scholar
  7. 7.
    Buchanan, T. S., and D. A. Shreeve. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. J. Biomech. Eng. 118:565–574, 1996.PubMedGoogle Scholar
  8. 8.
    Dalley, A. F. I., and K. L. Moore. Clinically Oriented Anatomy. Baltimore, MD: Lippincott Williams and Wilkins, 1999.Google Scholar
  9. 9.
    de Groot, J. H., and R. Brand. A three-dimensional regression model of the shoulder rhythm. Clin. Biomech. 16:735–743, 2001.CrossRefGoogle Scholar
  10. 10.
    Delp, S. L., A. E. Grierson, and T. S. Buchanan. Maximum isometric moments generated by the wrist muscles in flexion-extension and radial-ulnar deviation. J. Biomech. 29:1371–1375, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.CrossRefPubMedGoogle Scholar
  12. 12.
    Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.CrossRefPubMedGoogle Scholar
  13. 13.
    Engin, A. E., and I. Kaleps. Active muscle torques about long-bone axes of major human joints. Aviat. Space Environ. Med. 51:551–555, 1980.PubMedGoogle Scholar
  14. 14.
    Fowler, N. K., and A. C. Nicol. A biomechanical analysis of the rheumatoid index finger after joint arthroplasty. Clin. Biomech. 17:400–405, 2002.CrossRefGoogle Scholar
  15. 15.
    Garner, B. A., and M. G. Pandy. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4:93–126, 2001.Google Scholar
  16. 16.
    Gonzalez, R. V., T. S. Buchanan, and S. L. Delp. How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30:705–712, 1997.CrossRefPubMedGoogle Scholar
  17. 17.
    Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbets, and R. A. Walker. 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Natick, MA: United States Army Natick Research, Development and Engineering Center, 1989.Google Scholar
  18. 18.
    Herrmann, A. M., and S. L. Delp. Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. J. Hand Surg. [Am.] 24:1083–1090, 1999.CrossRefGoogle Scholar
  19. 19.
    Hollister, A., W. L. Buford, L. M. Myers, D. J. Giurintano, and A. Novick. The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10:454–460, 1992.CrossRefPubMedGoogle Scholar
  20. 20.
    Hollister, A., D. J. Giurintano, W. L. Buford, L. M. Myers, and A. Novick. The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. 188–193, 1995.Google Scholar
  21. 21.
    Hughes, R. E., G. Niebur, J. Liu, and K. N. An. Comparison of two methods for computing abduction moment arms of the rotator cuff. J. Biomech. 31:157–160, 1998.CrossRefPubMedGoogle Scholar
  22. 22.
    Jacobson, M. D., R. Raab, B. M. Fazeli, R. A. Abrams, M. J. Botte, and R. L. Lieber. Architectural design of the human intrinsic hand muscles. J. Hand Surg. [Am.] 17:804–809, 1992.Google Scholar
  23. 23.
    Knutson, J. S., K. L. Kilgore, J. M. Mansour, and P. E. Crago. Intrinsic and extrinsic contributions to the passive moment at the metacarpophalangeal joint. J. Biomech. 33:1675–1681, 2000.CrossRefPubMedGoogle Scholar
  24. 24.
    Kuechle, D. K., S. R. Newman, E. Itoi, B. F. Morrey, and K. N. An. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elbow Surg. 6:429–439, 1997.PubMedGoogle Scholar
  25. 25.
    Langenderfer, J., S. A. Jerabek, V. B. Thangamani, J. E. Kuhn, and R. E. Hughes. Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length. Clin. Biomech. 19:664–670, 2004.CrossRefGoogle Scholar
  26. 26.
    Lemay, M. A., and P. E. Crago. A dynamic model for simulating movements of the elbow, forearm, an wrist. J. Biomech. 29:1319–1330, 1996.CrossRefPubMedGoogle Scholar
  27. 27.
    Lemay, M. A., P. E. Crago, and M. W. Keith. Restoration of pronosupination control by FNS in tetraplegia—experimental and biomechanical evaluation of feasibility. J. Biomech. 29:435–442, 1996.CrossRefPubMedGoogle Scholar
  28. 28.
    Lieber, R. L., B. M. Fazeli, and M. J. Botte. Architecture of selected wrist flexor and extensor muscles. J. Hand Surg. [Am.] 15:244–250, 1990.Google Scholar
  29. 29.
    Lieber, R. L., M. D. Jacobson, B. M. Fazeli, R. A. Abrams, and M. J. Botte. Architecture of selected muscles of the arm and forearm: Anatomy and implications for tendon transfer. J. Hand Surg. [Am.] 17:787–798, 1992.Google Scholar
  30. 30.
    Liu, J., R. E. Hughes, W. P. Smutz, G. Niebur, and K. Nan-An. Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin. Biomech. 12:32–38, 1997.CrossRefGoogle Scholar
  31. 31.
    London, J. T. Kinematics of the elbow. J. Bone Joint Surg. Am. 63:529–535, 1981.PubMedGoogle Scholar
  32. 32.
    Loren, G. J., S. D. Shoemaker, T. J. Burkholder, M. D. Jacobson, J. Friden, and R. L. Lieber. Human wrist motors: Biomechanical design and application to tendon transfers. J. Biomech. 29:331–342, 1996.CrossRefPubMedGoogle Scholar
  33. 33.
    Magermans, D. J., E. K. Chadwick, H. E. Veeger, P. M. Rozing, and F. C. van der Helm. Effectiveness of tendon transfers for massive rotator cuff tears: A simulation study. Clin. Biomech. 19:116–122, 2004.CrossRefGoogle Scholar
  34. 34.
    Murray, W. M., A. M. Bryden, K. L. Kilgore, and M. W. Keith. The influence of elbow position on the range of motion of the wrist following transfer of the brachioradialis to the extensor carpi radialis brevis tendon. J. Bone Joint Surg. Am. 84-A:2203–2210, 2002.PubMedGoogle Scholar
  35. 35.
    Murray, W. M., T. S. Buchanan, and S. L. Delp. The isometric functional capacity of muscles that cross the elbow. J. Biomech. 33:943–952, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35:19–26, 2002.CrossRefPubMedGoogle Scholar
  37. 37.
    Murray, W. M., S. L. Delp, and T. S. Buchanan. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28:513–525, 1995.CrossRefPubMedGoogle Scholar
  38. 38.
    O’Sullivan, L. W., and T. J. Gallwey. Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle. J. Electromyogr. Kinesiol. 12:275–285, 2002.CrossRefPubMedGoogle Scholar
  39. 39.
    Otis, J. C., C. C. Jiang, T. L. Wickiewicz, M. G. Peterson, R. F. Warren, and T. J. Santner. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Joint Surg. Am. 76:667–676, 1994.PubMedGoogle Scholar
  40. 40.
    Otis, J. C., R. F. Warren, S. I. Backus, T. J. Santner, and J. D. Mabrey. Torque production in the shoulder of the normal young adult male. The interaction of function, dominance, joint angle, and angular velocity. Am. J. Sports Med. 18:119–123, 1990.PubMedGoogle Scholar
  41. 41.
    Piazza, S. J., and S. L. Delp. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123:599–606, 2001.CrossRefPubMedGoogle Scholar
  42. 42.
    Rancourt, D., and N. Hogan. Stability in force-production tasks. J. Mot. Behav. 33:193–204, 2001.PubMedGoogle Scholar
  43. 43.
    Ruby, L. K., W. P. Cooney, 3rd, K. N. An, R. L. Linscheid, and E. Y. Chao. Relative motion of selected carpal bones: A kinematic analysis of the normal wrist. J. Hand Surg. [Am.] 13:1–10, 1988.Google Scholar
  44. 44.
    Sancho-Bru, J. L., A. Perez-Gonzalez, M. Vergara, and D. J. Giurintano. A 3D biomechanical model of the hand for power grip. J. Biomech. Eng. 125:78–83, 2003.CrossRefPubMedGoogle Scholar
  45. 45.
    Saul, K. R., W. M. Murray, V. R. Hentz, and S. L. Delp. Biomechanics of the Steindler flexorplasty surgery: A computer simulation study. J. Hand Surg. [Am.] 28:979–986, 2003.CrossRefGoogle Scholar
  46. 46.
    Smutz, W. P., A. Kongsayreepong, R. E. Hughes, G. Niebur, W. P. Cooney, and K. N. An. Mechanical advantage of the thumb muscles. J. Biomech. 31:565–570, 1998.CrossRefPubMedGoogle Scholar
  47. 47.
    Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: The choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36:1019–1030, 2003.CrossRefPubMedGoogle Scholar
  48. 48.
    van der Helm, F. C. A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27:551–569, 1994.CrossRefPubMedGoogle Scholar
  49. 49.
    Winter, D. Biomechanics and Motor Control of Human Movement, 2nd ed. New York: Wiley, 1990.Google Scholar
  50. 50.
    Winters, J. M., and D. G. Kleweno. Effect of initial upper-limb alignment on muscle contributions to isometric strength curves. J. Biomech. 26:143–153, 1993.CrossRefPubMedGoogle Scholar
  51. 51.
    Woledge, R. C., N. A. Curtin, and E. Homsher. Energetic aspects of muscle contraction. Monogr. Physiol. Soc. 41:1–357, 1985.PubMedGoogle Scholar
  52. 52.
    Wu, G., F. C. T. van der Helm, H. E. J. (DirkJan) Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, and X. Wang. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II. Shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005.CrossRefPubMedGoogle Scholar
  53. 53.
    Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Katherine R. S. Holzbaur
    • 1
  • Wendy M. Murray
    • 2
    • 4
    Email author
  • Scott L. Delp
    • 2
    • 3
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanford
  2. 2.Bone and Joint CenterVA Palo Alto HCSPalo Alto
  3. 3.Bioengineering DepartmentStanford UniversityStanford
  4. 4.The Bone and Joint CenterVA Palo Alto Health Care SystemPalo Alto

Personalised recommendations