Annals of Biomedical Engineering

, Volume 33, Issue 6, pp 772–779

Roles of Hemodynamic Forces in Vascular Cell Differentiation

  • Gordon M. Riha
  • Peter H. Lin
  • Alan B. Lumsden
  • Qizhi Yao
  • Changyi Chen
Article

Abstract

The pulsatile nature of blood flow is a key stimulus for the modulation of vascular cell differentiation. Within the vascular media, physiologic stress is manifested as cyclic strain, while in the lumen, cells are subjected to shear stress. These two respective biomechanical forces influence the phenotype and degree of differentiation or proliferation of smooth muscle cells and endothelial cells within the human vasculature. Elucidation of the effect of these mechanical forces on cellular differentiation has led to a surge of research into this area because of the implications for both the treatment of atherosclerotic disease and the future of vascular tissue engineering. The use of mechanical force to directly control vascular cell differentiation may be utilized as an invaluable engineering tool in the future. However, an understanding of the role of hemodynamics in vascular cell differentiation and proliferation is critical before application can be realized. Thus, this review will provide a current perspective on the latest research and controversy behind the role of hemodynamic forces for vascular cell differentiation and phenotype modulation. Furthermore, this review will illustrate the application of hemodynamic force for vascular tissue engineering and explicate future directions for research.

Keywords

Hemodynamic forces Shear stress Cyclic strain Cell differentiation Endothelial cell Smooth muscle cell Tissue engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akimoto, S., M. Mitsumata, T. Sasaguri, and Y. Yoshida. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdil/Cipl/Wafl). Circ. Res. 86:185–190, 2000.PubMedGoogle Scholar
  2. 2.
    Albinsson, S., I. Nordstrom, and P. Hellstrand. Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J. Biol. Chem. 279:34849–34855, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Ando, J., T. Komatsuda, C. Ishikawa, and A. Kamiya. Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology 27:675–684, 1990.PubMedGoogle Scholar
  4. 4.
    Baguneid, M., D. Murray, H. J. Salacinski, B. Fuller, G. Hamilton, M. Walker, and A. M. Seifalian. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem. 39:151–157, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Ballermann, B. J., A. Dardik, E. Eng, and A. Liu. Shear stress and the endothelium. Kidney Int. Suppl. 67:S100–S108, 1998.CrossRefPubMedGoogle Scholar
  6. 6.
    Birukov, K. G., V. P. Shirinsky, O. V. Stepanova, V. A. Tkachuk, A. W. Hahn, T. J. Resink, and V. N. Smirnov. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell Biochem. 144:131–139, 1995.CrossRefPubMedGoogle Scholar
  7. 7.
    Browning, C. L., D. E. Culberson, I. V. Aragon, R. A. Fillmore, J. D. Croissant, R. J. Schwartz, and W. E. Zimmer. The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev. Biol. 194:18–37, 1998.CrossRefPubMedGoogle Scholar
  8. 8.
    Cevallos, M., S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen. Cyclic Strain Induces Expression of Specific Smooth Muscle Cell Markers in Human Endothelial Cells. 38th Annual Meeting of the Association for Academic Surgery. Houston, TX, 2004.Google Scholar
  9. 9.
    Chapman, G. B., W. Durante, J. D. Hellums, and A. I. Schafer. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H748–754, 2000.Google Scholar
  10. 10.
    Chen, X. L., S. E. Varner, A. S. Rao, J. Y. Grey, S. Thomas, C. K. Cook, M. A. Wasserman, R. M. Medford, A. K. Jaiswal, and C. Kunsch. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278:703–711, 2003.PubMedGoogle Scholar
  11. 11.
    Cunningham, J. J., J. J. Linderman, and D. J. Mooney. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann. Biomed. Eng. 30:927–935, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    Dardik, A., A. Liu, and B. J. Ballermann. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J. Vasc. Surg. 29:157–167, 1999.PubMedGoogle Scholar
  13. 13.
    Dekker, R. J., S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. Horrevoets. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Duband, J. L., M. Gimona, M. Scatena, S. Sartore, and J. V. Small. Calponin and SM 22 as differentiation markers of smooth muscle: Spatiotemporal distribution during avian embryonic development. Differentiation 55:1–11, 1993.CrossRefPubMedGoogle Scholar
  15. 15.
    Gimona, M., D. O. Furst, and J. V. Small. Metavinculin and vinculin from mammalian smooth muscle: Bulk isolation and characterization. J. Muscle Res. Cell Motil. 8:329–341, 1987.CrossRefPubMedGoogle Scholar
  16. 16.
    Gloe, T., H. Y. Sohn, G. A. Meininger, and U. Pohl. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J. Biol. Chem. 277:23453–23458, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Grainger, D. J., J. C. Metcalfe, A. A. Grace, and D. E. Mosedale. Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J. Cell Sci. 111:2977–2988, 1998.Google Scholar
  18. 18.
    Hamilton, D. W., T. M. Maul, and D. A. Vorp. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications. Tissue Eng. 10:361–369, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Hipper, A., and G. Isenberg. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch. 440:19–27, 2000.PubMedGoogle Scholar
  20. 20.
    Hirschi, K. K., S. A. Rohovsky, and P. A. D’Amore. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141:805–814, 1998.Google Scholar
  21. 21.
    Hoerstrup, S. P., G. Zund, R. Sodian, A. M. Schnell, J. Grunenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20:164–169, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Imberti, B., D. Seliktar, R. M. Nerem, and A. Remuzzi. The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium 9:11–23, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Jockenhoevel, S., G. Zund, S. P. Hoerstrup, A. Schnell, and M. Turina. Cardiovascular tissue engineering: A new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIOJ. 48:8–11, 2002.CrossRefGoogle Scholar
  24. 24.
    Kakisis, J. D., C. D. Liapis, and B. E. Sumpio. Effects of cyclic strain on vascular cells. Endothelium 11:17–28, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    Kanda, K., and T. Matsuda. Behavior of arterial wall cells cultured on periodically stretched substrates. Cell Transplant 2:415–484, 1993.Google Scholar
  26. 26.
    Kashiwada, K., W. Nishida, K. Hayashi, K. Ozawa, Y. Yamanaka, H. Saga, T. Yamashita, M. Tohyama, S. Shimada, K. Sato, and K. Sobue. Coordinate expression of alpha-tropomyosin and caldesmon isoforms in association with phenotypic modulation of smooth muscle cells. J. Biol. Chem. 272:15396–15404, 1997.CrossRefPubMedGoogle Scholar
  27. 27.
    Kaushal, S., G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7:1035–1040, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim, B. S., and D. J. Mooney. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122:210–215, 2000.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, B. S., J. Nikolovski, J. Bonadio, and D. J. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17:979–983, 1999.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee, R. T., C. Yamamoto, Y. Feng, S. Potter-Perigo, W. H. Briggs, K. T. Landschulz, T. G. Turi, J. F. Thompson, P. Libby, and T. N. Wight. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J. Biol. Chem. 276:13847–13851, 2001.PubMedGoogle Scholar
  31. 31.
    Lehoux, S., and A. Tedgui. Cellular mechanics and gene expression in blood vessels. J. Biomech. 36:631–643, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Li, Q., Y. Muragaki, H. Ueno, and A. Ooshima. Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin–angiotensin system and platelet-derived growth factor (PDGF). Hypertens. Res. 20:217–223, 1997.PubMedGoogle Scholar
  33. 33.
    Ma, Y. H., S. Ling, and H. E. Ives. Mechanical strain increases PDGF-B and PDGF beta receptor expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 265:606–610, 1999.CrossRefPubMedGoogle Scholar
  34. 34.
    Mills, I., C. R. Cohen, K. Kamal, G. Li, T. Shin, W. Du, and B. E. Sumpio. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: Study of strain dependency and the role of protein kinase A and C signaling pathways. J. Cell Physiol. 170:228–234, 1997.CrossRefPubMedGoogle Scholar
  35. 35.
    Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.PubMedGoogle Scholar
  36. 36.
    Niklason, L. E., W. Abbott, J. Gao, B. Klagges, K. K. Hirschi, K. Ulubayram, N. Conroy, R. Jones, A. Vasanawala, S. Sanzgiri, and R. Langer. Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg. 33:628–638, 2001.CrossRefPubMedGoogle Scholar
  37. 37.
    Nikolovski, J., B. S. Kim, and D. J. Mooney. Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB J. 17:455–457, 2003.PubMedGoogle Scholar
  38. 38.
    O’Callaghan, C. J., and B. Williams. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: Role of TGF-beta(1). Hypertension 36:319–324, 2000.PubMedGoogle Scholar
  39. 39.
    Ott, M. J., and B. J. Ballermann. Shear stress-conditioned, endothelial cell-seeded vascular grafts: Improved cell adherence in response to in vitro shear stress. Surgery 117:334–339, 1995.PubMedGoogle Scholar
  40. 40.
    Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801, 2004.CrossRefPubMedGoogle Scholar
  41. 41.
    Park, J. S., J. S. Chu, C. Cheng, F. Chen, D. Chen, and S. Li. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88:359–368, 2004.CrossRefPubMedGoogle Scholar
  42. 42.
    Reusch, P., H. Wagdy, R. Reusch, E. Wilson, and H. E. Ives. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ. Res. 79:1046–1053, 1996.PubMedGoogle Scholar
  43. 43.
    Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29:923–934, 2001.CrossRefPubMedGoogle Scholar
  44. 44.
    Shi, Q., S. Rafii, M. H. Wu, E. S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. Moore, R. F. Storb, and W. P. Hammond. Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367, 1998.PubMedGoogle Scholar
  45. 45.
    Shields, J. M., R. J. Christy, and V. W. Yang. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J. Biol. Chem. 271:20009–20017, 1996.CrossRefPubMedGoogle Scholar
  46. 46.
    Shirota, T., H. He, H. Yasui, and T. Matsuda. Human endothelial progenitor cell-seeded hybrid graft: Proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng. 9:127–136, 2003.CrossRefPubMedGoogle Scholar
  47. 47.
    Singh, T. M., K. Y. Abe, T. Sasaki, Y. J. Zhuang, H. Masuda, and C. K. Zarins. Basic fibroblast growth factor expression precedes flow-induced arterial enlargement. J. Surg. Res. 77:165–173, 1998.CrossRefPubMedGoogle Scholar
  48. 48.
    Smith, P. G., R. Moreno, and M. Ikebe. Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am. J. Physiol. 272:L20–27, 1997.Google Scholar
  49. 49.
    Stegemann, J. P., and R. M. Nerem. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31:391–402, 2003.CrossRefPubMedGoogle Scholar
  50. 50.
    Sterpetti, A. V., A. Cucina, L. Santoro, B. Cardillo, and A. Cavallaro. Modulation of arterial smooth muscle cell growth by haemodynamic forces. Eur. J. Vasc. Surg. 6:16–20, 1992.PubMedGoogle Scholar
  51. 51.
    Tock, J., V. Van Putten, K. R. Stenmark, and R. A. Nemenoff. Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem. Biophys. Res. Commun. 301:1116–1121, 2003.CrossRefPubMedGoogle Scholar
  52. 52.
    Van Gieson, E. J., W. L. Murfee, T. C. Skalak, and R. J. Price. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ. Res. 92:929–936, 2003.CrossRefGoogle Scholar
  53. 53.
    Wang, H., S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen. Shear stress induces endothelial cell differentiation from mouse embryo mesenchymal progenitor cells. J. Surg. Res. 121:274, 2004.CrossRefGoogle Scholar
  54. 54.
    Wasserman, S. M., and J. N. Topper. Adaptation of the endothelium to fluid flow: In vitro analyses of gene expression and in vivo implications. Vasc. Med. 9:35–45, 2004.CrossRefPubMedGoogle Scholar
  55. 55.
    Wasserman, S. M., F. Mehraban, L. G. Komuves, R. B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, and J. N. Topper. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics 12:13–23, 2002.PubMedGoogle Scholar
  56. 56.
    Wilson, E., K. Sudhir, and H. E. Ives. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96:2364–2372, 1995.PubMedGoogle Scholar
  57. 57.
    Yamamoto, K., T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 95:2081–2088, 2003.Google Scholar
  58. 58.
    Zeidan, A., I. Nordstrom, S. Albinsson, U. Malmqvist, K. Sward, and P. Hellstrand. Stretch-induced contractile differentiation of vascular smooth muscle: Sensitivity to actin polymerization inhibitors. Am. J. Physiol. Cell Physiol. 284:C1387–1396, 2003.Google Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Gordon M. Riha
    • 1
  • Peter H. Lin
    • 1
  • Alan B. Lumsden
    • 1
  • Qizhi Yao
    • 1
  • Changyi Chen
    • 1
  1. 1.Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHouston
  2. 2.Michael E. DeBakey Department of SurgeryHouston

Personalised recommendations