Annals of Biomedical Engineering

, Volume 33, Issue 6, pp 780–797 | Cite as

Computational Model of Device-Induced Thrombosis and Thromboembolism

  • Paul D. Goodman
  • Evan T. Barlow
  • Peter M. Crapo
  • S. Fazal Mohammad
  • Kenneth A. Solen


A numerical model of thrombosis/thromboembolism (T/TE) is presented that predicts the progression of thrombus growth and thromboembolization in low-shear devices (hemodialyzers, oxygenators, etc.). Coupled convection–diffusion-reaction equations were solved to predict velocities, platelet agonist (ADP, thromboxane A2, and thrombin) concentrations, agonist-induced and shear-induced platelet activation, and platelet transport and adhesion to biomaterial surfaces and adherent platelets (hence, thrombus growth). Single-platelet and thrombus embolization were predicted from shear forces and surface adhesion strengths. Values for the platelet-biomaterial reaction constant and the platelet adhesion strength were measured in specific experiments, but all other parameter values were obtained from published sources. The model generated solutions for sequential time steps, while adjusting velocity patterns to accommodate growing surface thrombi.

Heparinized human blood was perfused (0.75 ml/min) through 580 μm-ID polyethylene flow cells with flow contractions (280 μm-ID). Thrombus initiation, growth, and embolization were observed with videomicroscopy, while embolization was confirmed by light scattering, and platelet adhesion was determined by scanning electron microscopy.

Numerical predictions and experimental observations were similar in indicating: 1) the same three thrombotic locations in the flow cell and the relative order of thrombus development in those locations, 2) equal thrombus growth rates on polyethylene and silicon rubber (in spite of differing overall T/TE), and 3) similar effects of flow rate (1.5 ml/min versus 0.75 ml/min) on platelet adhesion and thrombosis patterns.


Thrombosis Thrombogenecity Hemocompatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, P. A. M., P. Steeniuk, J. J. Sixma, and R. M. Heethaar. Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J. Biomech. 19(10):799–805, 1986.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams, G. A., and I. A. Feuerstein. Platelet adhesion and release: Interfacial concentration of released materials. Am. J. Physiol. 240:H99–H108, 1981.PubMedGoogle Scholar
  3. 3.
    Adams, G. A., and I. A. Feuerstein. Maximum fluid concentrations of materials released from platelets at a surface. Am. J. Physiol. 244:H109–H114, 1983.PubMedGoogle Scholar
  4. 4.
    Baldwin J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. Estimation of Reynolds stresses within the Penn State left ventricular assist device. ASAIO Trans. 36:M274–M278, 1990.PubMedGoogle Scholar
  5. 5.
    Basmadjian, D. Embolization: Critical thrombus height, shear rates, and pulsatility. Patency of blood vessels. J. Biomed. Mater. Res. 23(11):1315–1326, 1989.CrossRefPubMedGoogle Scholar
  6. 6.
    Basmadjian, D. The effect of flow and mass transport in thrombogenesis. Ann. Biomed. Eng. 18(6):685–709, 1990.PubMedGoogle Scholar
  7. 7.
    Born, G. V. R. Research on the mechanism of the intravascular adhesion of circulating cells. In: Platelets and Thrombosis, edited by S. Sherry and A. Scriabin. Baltimore: University of Park Press, 1972, pp. 113–126.Google Scholar
  8. 8.
    DeSomer F., L. Foubert, M. Vanackere, D. Dujardin, J. Delanghe, and G. Van Nooten. Impact of oxygenator design on hemolysis, shear stress, and white blood cell and platelet counts. J. Cardiothorac. Vasc. Anesth. 10(7):884–889, 1996.PubMedGoogle Scholar
  9. 9.
    Eloot S., D. De Wachter, I. Van Tricht, and P. Verdonck. Computational flow modeling in hollow-fiber dialyzers. Artif. Org. 26(7):590–599, 2002.CrossRefGoogle Scholar
  10. 10.
    Feuerstein, I. A., J. M. Brophy, and J. L. Brash. Platelet transport and adhesion to reconstituted collagen and artificial surfaces. Trans. Amer. Soc. Artif. Int. Organs 21:427–435, 1975.Google Scholar
  11. 11.
    Feuerstein, I. A., and S. M. Buchan. Platelet adherence and detachment: A flow study with a series of hydroxyethyl methacrylate-ethyl methacrylate copolymers using video microscopy. J. Biomed. Mater. Res. 25:185–198, 1991.CrossRefPubMedGoogle Scholar
  12. 12.
    Fogelson, A. L. Continuum models of platelet aggregation: Formulation and mechanical properties. J. Appl. Math. 52:1089–1110, 1992.Google Scholar
  13. 13.
    Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. 56(6):1121–1141, 1989.PubMedGoogle Scholar
  14. 14.
    Frojmovic, M. M., R. F. Mooney, and T. Wong. Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration. Biophys. J. 67:2060–2068, 1994.PubMedGoogle Scholar
  15. 15.
    Frojmovic, M. M., T. Wong, and T. van de Ven. Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys. J. 59:815–827, 1991.PubMedGoogle Scholar
  16. 16.
    Fung, Y. C. Biodynamics: Circulation. New York: Springer-Verlag, 1984.Google Scholar
  17. 17.
    Giacomini, A., P., Legovini, F. Antico, G. S. Gessoni, S. Valverde, M. M. Salvadego, and F. Manoni. Evaluation of platelet analysis on the ADVIA 120 Hematology System. Lab. Hematol. 7:180–185, 2001.Google Scholar
  18. 18.
    Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: Basic principles and applications. Thromb. Haemost. 55(3):415–435, 1986.PubMedGoogle Scholar
  19. 19.
    Goodman, P. D., M. W. Hall, S. Sukavaneshvar, and K. A. Solen. In vitro model for studying the effects of hemodynamics on device induced thromboembolism in human blood. ASAIO J. 46:576–578, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Grabowski, E. F., J. T. Franta, and P. Didisheim. Platelet aggregation in flowing blood in vitro. II. Dependence of aggregate growth rate on ADP concentration and shear rate. Microvasc. Res. 16:183–195, 1978.CrossRefPubMedGoogle Scholar
  21. 21.
    Grabowski, E. F., L. I. Friedman, and E. F. Leonard. Effects of shear rate on the diffusion and adhesion of blood platelets to a foreign surface. Ind. Eng. Chem. Fundam. 11(2):224–232, 1972.CrossRefGoogle Scholar
  22. 22.
    Griffith, M. J. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J. Biol. Chem. 257:7360–7365, 1982.PubMedGoogle Scholar
  23. 23.
    Griffith, M. J. The heparin-enhanced antithrombin III/thrombin reaction is saturable with respect to both thrombin and antithrombin III. J. Biol. Chem. 257:13899–13902, 1982.PubMedGoogle Scholar
  24. 24.
    Gu Y. J., P. W. Boonstra, R. Graaff, A. A. Rijnsburger, H. Mungroop, and W. van Oeveren. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: A comparison between hollow fiber and flat sheet membrane oxygenators. Artif. Org. 24(1):43–48, 2000.Google Scholar
  25. 25.
    Hellums, J. D. 1993 Whitaker Lecture: Biorheology in thrombosis research. Ann Biomed. Eng. 22(5):445–455, 1994.PubMedGoogle Scholar
  26. 26.
    Hubbell, J. A., and L. V. McIntire. Platelet active concentration profiles near growing thrombi. Biophys. Soc. 50:937–945, 1986.Google Scholar
  27. 27.
    Jen, C. J., H. Li, J. Wang, H. Chen, and S. Usami. Flow-induced detachment of adherent platelets from fibrinogen-coated surface. Heart Circ. Physiol. 39:H160–H166, 1996.Google Scholar
  28. 28.
    Jones, R. L., N. H. Wilson, and C. G. Marr. In: Chemistry, Biochemistry, and Pharmacological Activity of Prostanoids, edited by S. M. Roberts and F. Scheinmann. Oxford: Pergamon Press, 1979, pp. 210–220.Google Scholar
  29. 29.
    Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27:137, 1965.Google Scholar
  30. 30.
    Kennedy, S. D., Y. Igarashi, and T. S. Kickler. Measurement of in-vitro P-selectin expression by flow cytometry. Am. J. Clin. Pathol. 107:99–104, 1997.PubMedGoogle Scholar
  31. 31.
    Langford, E. F., R. J. Wainwright, and J. F. Martin. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler. Thromb. 16:51–55, 1996.Google Scholar
  32. 32.
    Lemire P. P., J. C. McDaniel, H. G. Wood, P. E. Allaire, N. Landrot, X. Song, S. W. Day, and D. Olsen. The application of quantitative oil streaking to the HeartQuest left ventricular assist device. Artif. Org. 26(11):971–973, 2002.CrossRefGoogle Scholar
  33. 33.
    Mandrusov, E., J. D. Yang, N. Pfeiffer, L. Vroman, E. Puszkin, and E. F. Leonard. Kinetics of protein deposition and replacement from a shear flow. AICHE J. 44(2):233–244, 1998.CrossRefGoogle Scholar
  34. 34.
    McPherson, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Platelet retention in glass bead columns: Further evidence for the importance of ADP. Blood 44:411–425, 1972.Google Scholar
  35. 35.
    Merrill, E. W., and G. A. Pelletier. Viscosity of human blood: Transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23(2):178–182, 1967.PubMedGoogle Scholar
  36. 36.
    Reynolds, L. O., W. H. Newren, J. F. Scolio, and I. F. Miller. A model for thromboembolization on biomaterials. J. Biomater. Sci. Polymer Ed. 4(5):451–465, 1993.Google Scholar
  37. 37.
    Ronco C., A. Brendolan, C. Crepaldi, M. Rodighiero, and M. Scabardi. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique. J. Am. Soc. Nephrol. 13(Suppl. 1):S53–S61, 2002.CrossRefPubMedGoogle Scholar
  38. 38.
    Rosing, J., J. L. M. L. van Rijn, E. M. Bevers, G. Van Dieijen, P. Comfurius, and R. F. A. Zwaal. The role of activated human platelets in prothrombin and factor X activation. Blood 65:319–332, 1985.PubMedGoogle Scholar
  39. 39.
    Solen K. A., S. Sukavaneshvar, Y. Zheng, B. Hanrahan, M. W. Hall, P. Goodman, B. Goodman, and S. F. Mohammad. A light scattering instrument to detect thromboemboli in blood. J. Biomed. Opt. 8:70–79,2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.CrossRefPubMedGoogle Scholar
  41. 41.
    Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.CrossRefPubMedGoogle Scholar
  42. 42.
    Strong, A. B. Theoretical and experimental analysis of cellular adhesion to polymer surfaces. J. Biomed. Mater. Res. 21:1039–1055, 1987.CrossRefPubMedGoogle Scholar
  43. 43.
    Stubley, G. D., A. B. Strong, W. E. Hale, and D. R. Absolom. A review of mathematical models for the prediction of blood cell adhesion. Phys. Chem. Hydrodyn. 8(2):221–235, 1987.Google Scholar
  44. 44.
    Treichler J., S. E. Rosenow, G. Damm, K. Haito, Y. Ohara, K. Mizuguchi, K. Makinouchi, S. Takatani, and Y. Nosé. A fluid dynamic analysis of a rotary blood pump for design improvement. Artif. Org. 17(9):797–808,1993.Google Scholar
  45. 45.
    Tschopp, T. B. and H. R. Baumgartner. Enzymatic removal of ADP from plasma: Unaltered platelet adhesion but reduced aggregation on subendothelium and collagen fibrils. Thromb. Haemost. 35:334–341, 1976.PubMedGoogle Scholar
  46. 46.
    Turrito, V. T., and H. R. Baumgartner. Platelet deposition on the subendothelium exposed to flowing blood: Mathematical analysis of physical parameters. Trans. Amer. Soc. Artif. Int. Organs 21:593–601, 1975.Google Scholar
  47. 47.
    Weiss, H. J., and W. A. Smith. Platelets: Pathophysiology and Antiplatelet Drug Therapy. New York: Liss, 1982.Google Scholar
  48. 48.
    Wooton, D. M., C. P. Markou, S. R. Hanson, and D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29(4):321–329, 2001.CrossRefPubMedGoogle Scholar
  49. 49.
    Wu, Y. P., P. G. de Groot, and J. J. Sixma. Shear-stress-induced detachment of blood platelets from various surfaces. Arterioscler. Thromb. Vasc. Biol. 17(11):3202–3207, 1997.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Paul D. Goodman
    • 1
  • Evan T. Barlow
    • 1
  • Peter M. Crapo
    • 1
  • S. Fazal Mohammad
    • 2
  • Kenneth A. Solen
    • 1
    • 3
  1. 1.Department of Chemical EngineeringBrigham Young UniversityProvo
  2. 2.Department of PathologyUniversity of UtahSalt Lake City
  3. 3.Department of Chemical EngineeringBrigham Young University

Personalised recommendations