Advertisement

Annals of Biomedical Engineering

, Volume 33, Issue 4, pp 545–553 | Cite as

The Air-Conditioning Capacity of the Human Nose

  • Sara Naftali
  • Moshe Rosenfeld
  • Michael Wolf
  • David Elad
Article

Abstract

The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

Keywords

Nasal cavity Airflow Heat transfer Water–vapor exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, D. J., F. M. Baroody, E. Naureckas, and R. M. Naclerio. Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air. Am. J. Rhinol. 15(1):41–45, 2001.PubMedGoogle Scholar
  2. 2.
    Becker, W., H. H. Naumann, and C. R. Pfaltz. Ear, Nose, and Throat Diseases: A Pocket Reference. New York: Thieme Medical Pub, 1994.Google Scholar
  3. 3.
    Cole, P. Biophysics of nasal airflow: A review. Am. J. Rhinol. 14(4): 245–249, 2000.PubMedGoogle Scholar
  4. 4.
    Cole, P. Further consideration on the conditioning of respiratory air. J. Laryngol. Otol. 67:669–681, 1953.PubMedGoogle Scholar
  5. 5.
    Cole, P. Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. J. Laryngol. Otol. 67:449–456, 1953.PubMedGoogle Scholar
  6. 6.
    Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. 69:362–372, 1990.PubMedGoogle Scholar
  7. 7.
    Eccles, R. Nasal airflow in health and disease. Acta Otolaryngol. 120(5):580–595, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Elad, D., R. Liebenthal, B. L. Wenig, and S. Einav. Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31:585–592, 1993.PubMedGoogle Scholar
  9. 9.
    Elsevier’s Interactive Anatomy: Paranasal Sinuses & Anterior Skull Base, Disc I of Volume 1: The Head & Neck. Available from http://www.elsevier.nl.
  10. 10.
    Falls, H. B. Exercise Physiology. New York: Academic Press, 1968.Google Scholar
  11. 11.
    Farley, R. D., and K. R. Patel. Comparison of air warming in the human airway with a thermodynamic model. Med. Biol. Eng. Comput. 26:628–632, 1988.PubMedGoogle Scholar
  12. 12.
    Ferron, G. A., B. Haider, and W. G. Kreyling. A method for the approximation of the relative humidity in the upper human airway. Bull. Math. Biol. 47:565–589, 1985.PubMedGoogle Scholar
  13. 13.
    Fox, E., R. Bowers, and M. Foss. The Physiological Basis for Exercise and Sport. Masison: Brown & Benchmark Pub, 1993.Google Scholar
  14. 14.
    Hahn, I., P. W. Scherer, and M. M. Mozell. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 75:2273–2287, 1993.PubMedGoogle Scholar
  15. 15.
    Hanna, L. M., and P. W. Scherer. A theoretical model of localized heat and water vapor transport in the human respiratory tract. J. Biomech. Eng. 108:19–27, 1986.PubMedGoogle Scholar
  16. 16.
    Hanna, L. M., and P. W. Scherer. Regional control of local airway heat and water vapor losses. J. Appl. Physiol. 61:624–632, 1986.PubMedGoogle Scholar
  17. 17.
    Hörschler, I., M. Meinke, and W. Schröder. Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32:39–45, 2003.Google Scholar
  18. 18.
    Ingelstedt, S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryng. (Stockholm) Suppl. 131:1–80, 1956.Google Scholar
  19. 19.
    Keck, T., R. Leiacker, H. Riechelmann, and G. Rettinger. Temperature profile in the nasal cavity. Laryngoscope 110(4):651–654, 2000.PubMedGoogle Scholar
  20. 20.
    Keyhani, K., P. W. Scherer, and M. M. Mozell. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117:429–441, 1995.PubMedGoogle Scholar
  21. 21.
    Lang, J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal Sinuses. New York: Thiem Medical Pub, 1989.Google Scholar
  22. 22.
    McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58(2):564–570, 1985.PubMedGoogle Scholar
  23. 23.
    McFadden, E. R. Heat and water exchange in human airway. Am. Rev. Respir. Dis. 146:S8–S10, 1992.PubMedGoogle Scholar
  24. 24.
    McFadden, E. R. Respiratory heat and water exchange: Physiological and clinical implications. J. Appl. Physiol. 54(2):331–336, 1983.PubMedGoogle Scholar
  25. 25.
    Morris, I. R. Functional anatomy of the upper airway. Emerg. Med. Clin. North Am. 6:639–669, 1988.Google Scholar
  26. 26.
    Naftali, S., R. C. Schroter, R. J. Shiner, and D. Elad. Transport phenomena in the human nasal cavity: A computational model. Ann. Biomed. Eng. 26:831–839, 1998.PubMedGoogle Scholar
  27. 27.
    Nuckols, M. L., J. L. Zumrick, and C. E. Johnson. Heat and water vapor transport in the human upper airways at hyperbaric conditions. J. Biomech. Eng. 105:24–30, 1983.PubMedGoogle Scholar
  28. 28.
    Primiano, F. P., Jr., G. M. Saidel, F. W. Montague, K. L. Kruse, C. G. Green, and J. G. Horowitz. Water vapour and temperature dynamics in the upper airways of normal and CF subjects. Eur. Respir. J. 1:407–414, 1988.PubMedGoogle Scholar
  29. 29.
    Proctor, D. F., and D. L. Swift. Temperature and water vapor adjustment. Respir. Defense Mech. Part I 4:95–124, 1977.Google Scholar
  30. 30.
    Proctor, D. F. Airborne disease and the upper respiratory tract. Bacteriol. Rev. 30:498–513, 1966.PubMedGoogle Scholar
  31. 31.
    Proctor, D. F. The upper airways: Nasal physiology and defense of the lungs. Am. Rev. Respir. Dis. 115:97–129, 1977.PubMedGoogle Scholar
  32. 32.
    Rice, D. H. Rebuilding the inferior turbinate with hydroxyapatite cement. Ear. Nose Throat J. 79(4):276–277, 2000.PubMedGoogle Scholar
  33. 33.
    Rouadi, P., F. M. Baroody, D. Abbott, E. Naureckas, J. Solway, and R. M. Naclerio. A technique to measure the ability of the human nose to warm and humidify air. J. Appl. Physiol. 87(1):400–406, 1999.PubMedGoogle Scholar
  34. 34.
    Saidel, G. M., K. L. Kruse, and F. P. Primiano Jr. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng. 105:188–193, 1983.PubMedGoogle Scholar
  35. 35.
    Scherer, P. W., I. I. Hahn, and M. M. Mozell. The biophysics of nasal airflow. Otolaryngol. Clin. North Am. 22:265–278, 1989.PubMedGoogle Scholar
  36. 36.
    Schroter, R. C., and N. V. Watkins. Respiratory heat exchange in mammals. Respir. Physiol. 78:357–368, 1989.PubMedGoogle Scholar
  37. 37.
    Subramanian, R. P., R. B. Richardson, K. T. Morgan, and J. S. Kimbell. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10:91–120, 1998.Google Scholar
  38. 38.
    Thibodeau, G. A., and K. T. Patton. Anatomy & Physiology, 2nd ed. Mosby, 1993.Google Scholar
  39. 39.
    Vander, A. J., J. H. Shermann, and D. S. Luciano. Human Physiology: The Mechanisms of Body Function. New York: McGraw-Hill, 1975.Google Scholar
  40. 40.
    Wolf, M., S. Naftali, R. C. Schroter, and D. Elad. Air-conditioning characteristics of the human nose. J. Laryngol. Otol. 118(2):87–92, 2004.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Sara Naftali
    • 1
  • Moshe Rosenfeld
    • 2
  • Michael Wolf
    • 3
    • 4
  • David Elad
    • 1
  1. 1.Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Fluid Mechanics, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Department of OtorhinolaryngologyThe Chaim Sheba Medical CenterTel HashomerIsrael
  4. 4.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations