Annals of Biomedical Engineering

, Volume 33, Issue 4, pp 429–443 | Cite as

A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves

  • Hwa-Liang Leo
  • Hélène Simon
  • Josie Carberry
  • Shao-Chien Lee
  • Ajit P. Yoganathan
Article

Abstract

Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this in vitro study, the velocity fields inside and downstream of two different prototype tri-lealfet polymeric heart valves were studied. Experiments were conducted on two 23 mm prototype polymeric valves, provided by AorTech Europe, having open or closed commissure designs and leaflet thickness of 120 and 80 μm, respectively. A two-dimensional LDV system was used to measure the velocity fields in the vicinity of the two valves under simulated physiological conditions. Both commissural design and leaflet thickness were found to affect the flow characteristics. In particular, very high levels of Reynolds shear stress of 13,000 dynes/cm2 were found in the leakage flow of the open commisure design. Maximum leakage velocities in the open and closed designs were 3.6 m/s and 0.5 m/s respectively; the peak forward flow velocities were 2.0 m/s and 2.6 m/s, respectively. In both valve designs, shear stress levels exceeding 4,000 dyne/cm2 were observed at the trailing edge of the leaflets and in the leakage and central orifice jets during peak systole. Additionally, regions of low velocity flow conducive to thrombus formation were observed in diastole. The flow structures measured in these experiments are consistent with the location of thrombus formation observed in preliminary animal experiments.

Keywords

Fluid mechanics Polyurethanes Coaptation Washout Vena contracta Gap channel Oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernacca, G. M., T. G. Mackay, and D. J. Wheatley. In vitro function and durability of a polyurethane heart valve: Material considerations. J. Heart Valve Dis. 5(5):538–542, 1996.PubMedGoogle Scholar
  2. 2.
    Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: Effects of leaflet thickness and material. Int. J. Artif. Organs 20(6):327–331, 1997.PubMedGoogle Scholar
  3. 3.
    Bernacca, G. M., B. O’Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness. Biomaterials 23(1):45–50, 2002.CrossRefPubMedGoogle Scholar
  4. 4.
    Chandran, K. B., R. Fatemi, R. Schoephoerster, D. Wurzel, G. Hansen, G. Pantalos, L. S. Yu, and W. J. Kolff. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Artif. Organs 13(2):148–154, 1989.PubMedGoogle Scholar
  5. 5.
    Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108 (Suppl 1):II134–II139, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a medtronic parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.PubMedGoogle Scholar
  7. 7.
    Ellis, J. T. and A. P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St Jude medical hemodynamic plus and regent bileaflet mechanical heart valves. J. Thorac Cardiovasc. Surg. 119(1):83–93, 2000.PubMedGoogle Scholar
  8. 8.
    Ellis, J. T., B. R. Travis, and A. P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical Regent bileaflet mechanical heart valve. Ann. Biomed. Eng. 28(5):524–532, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Healy, T. M., J. T. Ellis, A. A. Fontaine, C. A. Jarrett, and A. P. Yoganathan. An automated method for analysis and visualization of laser Doppler velocimetry data. Ann. Biomed. Eng. 25(2):335–343, 1997.PubMedGoogle Scholar
  10. 10.
    Herold, M., H. B. Lo, H. Reul, H. Muckter, K. Taguchi, M. Giesiepen, G. Birkle, G. Hollweg, G. Rau, and B. J. Messmer. The Helmoltz-institute-tri-leaflet-polyurethane-heart valve prosthesis: Design, manufacturing and first in-vitro and in vivo results, In: Polyurethanes in Biomedical Engineering II, edited by H. E. A. Planck. Elsevier Science Publishers, 1987. pp. 231–268.Google Scholar
  11. 11.
    Hung, T. C., R. M. Hochmuth, J. H. Joist, and S. P. Sutera. Shear-induced aggregation and lysis of platelets. Trans. Am. Soc. Artif. Intern. Organs. 22:285–291, 1976.PubMedGoogle Scholar
  12. 12.
    Jamieson, W. R., L. H. Burr, W. N. Jr., Anderson, J. B. Chambers, J. P. Gams, and C. M. Dowd, Prosthesis-related complications: First-year annual rates. J. Heart Valve Dis. 11(6):758–763, 2002.PubMedGoogle Scholar
  13. 13.
    Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, H. B. Lo, S. Dabritz, C. Rosenbaum, A. Bitter, and K. Ziehe. Advances in design principle and fluid dynamics of a flexible polymeric heart valve. ASAIO Trans. 37(3):M451–M453, 1991.PubMedGoogle Scholar
  14. 14.
    Lelah, M. D., and S. L. Cooper. Polyurethanes in Medicine. Boca Raton, Fla.: CRC Press, 1986, 225 p.Google Scholar
  15. 15.
    Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: Design, manufacture and evaluation. Biomaterials. 17(19):1857–1863, 1996.CrossRefPubMedGoogle Scholar
  17. 17.
    Nemerson, Y., and V. T. Turitto. The effect of flow on hemostasis and thrombosis. Thromb. Haemost. 66(3):272–276, 1991.PubMedGoogle Scholar
  18. 18.
    Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.PubMedGoogle Scholar
  19. 19.
    Sallam, A. M., and N. H. Hwang. Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology 21(6):783–797, 1984.PubMedGoogle Scholar
  20. 20.
    Sandwell, D. T. Biharmonic spline interpolation of GEOS-3 and SEASAT Altimeter data. Geophys. Res. Lett. 2:139–142, 1987.Google Scholar
  21. 21.
    Simionescu, D. T., J. J. Lovekamp, and N. R. Vyavahare. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. J. Biomed. Mater. Res. 66A(4):755–763, 2003.Google Scholar
  22. 22.
    Slack, S. M., Y. Cui, and V. T. Turitto. The effects of flow on blood coagulation and thrombosis. Thromb. Haemost. 70(1):129–134, 1993.PubMedGoogle Scholar
  23. 23.
    Slack, S. M., L. K. Jennings, and V. T. Turitto. Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation. Ann. Biomed. Eng. 22(6):653–659, 1994.PubMedGoogle Scholar
  24. 24.
    Slack, S. M., and V. T. Turitto. Flow chambers and their standardization for use in studies of thrombosis. On behalf of the subcommittee on rheology of the scientific and standardization committee of the ISTH. Thromb. Haemost. 72(5):777–781, 1994.PubMedGoogle Scholar
  25. 25.
    Spina, M., F. Ortolani, A. E. Messlemani, A. Gandaglia, J. Bujan, N. Garcia-Honduvilla, I. Vesely, G. Gerosa, D. Casarotto, L. Petrelli, and M. Marchini. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: Extracellular matrix structure, prevention from calcification, and cell repopulation features. J. Biomed. Mater. Res. 67A(4):1338–1350, 2003.Google Scholar
  26. 26.
    Tiederman, W. G., R. M. Privette, and W. M. Phillips. Cycle-to-cycle variation effects on turbulent shear stress measurment in pulsatile flows. Exp. Fluids. 6:265–272, 1988.Google Scholar
  27. 27.
    Turitto, V. T., and C. L. Hall. Mechanical factors affecting hemostasis and thrombosis. Thromb Res. 92(6 Suppl 2):S25–S31, 1998.PubMedGoogle Scholar
  28. 28.
    Wheatley, D. J., L. Raco, G. M. Bernacca, I. Sim, P. R. Belcher, and J. S. Boyd. Polyurethane: Material for the next generation of heart valve prostheses? Eur. J. Cardiothorac. Surg. 17(4):440–448, 2000.PubMedGoogle Scholar
  29. 29.
    Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O’Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs. 24(2):95–101, 2001.PubMedGoogle Scholar
  30. 30.
    Woo, Y. R., F. P. Williams, and A. P. Yoganathan. In vitro fluid dynamic characteristics of the abiomed trileaflet heart valve prosthesis. J. Biomech. Eng. 105(4):338–345, 1983.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Hwa-Liang Leo
    • 1
    • 2
  • Hélène Simon
    • 3
  • Josie Carberry
    • 1
  • Shao-Chien Lee
    • 3
  • Ajit P. Yoganathan
    • 1
    • 4
  1. 1.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of TechnologyAtlanta
  2. 2.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta
  3. 3.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlanta
  4. 4.School of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations