Advertisement

Annals of Biomedical Engineering

, Volume 33, Issue 5, pp 557–566 | Cite as

Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In Vitro Study

  • Jorge Hernan Jimenez
  • Dennis Dam Soerensen
  • Zhaoming He
  • Jennifer Ritchie
  • Ajit P. Yoganathan
Article

Abstract

Since variations in annular motion/shape and papillary muscle displacement have been observed in studies of dilated cardiomyopathy and ischemic mitral regurgitation, the objective of this study was to investigate the effects of annular motion/flexibility and papillary muscle displacement on chordal force and mitral valve function. Six human mitral valves were studied in a left heart simulator using a flexible annular model. Mitral flow, trans-mitral pressure and chordae tendineae tension were monitored online in normal and pathophysiologic papillary muscle positions. The flexible annulus model showed a significant increase in mitral regurgitation volume (p < 0.05) when compared to static annuli models. Furthermore, there was a significant increase of force on the basal chords compared to the force present with the static annuli models. Utilizing the flexible annulus model, papillary muscle displacement significantly increased the force on the anterior strut, posterior intermediate and commissural chords. (1) Papillary muscle displacement increases the tension on the intermediate chords inducing tenting of the leaflets and subsequent regurgitation. (2) The tension on the intermediate and marginal chords is relatively insensitive to annular motion, whereas tension on the basal chords is directly affected by annular motion.

Keywords

Mitral regurgitation Chordal force Annular motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boltwood, C. M., M. Wong, and P. M. Shah. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: The mechanism of functional mitral regurgitation. Circulation 68:498–508, 1983.PubMedGoogle Scholar
  2. 2.
    Flachskampf, F. A., S. Chandra, A. Gaddipatti, R. A. Levine, A. E. Weyman, W. Amelig, P. Hanrath, and J. D. Thomas. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. Am. Soc. Echocardiogr. 13:277–287, 2000.CrossRefGoogle Scholar
  3. 3.
    Glasson, J. R., M. Komeda, G. T. Daughters, A. F. Bolger, A. MacIsaac, S. N. Oesterle, N. B. Ingels, and D. C. Miller. Three-dimensional dynamics of the canine mitral annulus during ischemic mitral regurgitation. Ann. Thorac. Surg. 62:1059–1068, 1996.CrossRefPubMedGoogle Scholar
  4. 4.
    Gorman, J. H. III, R. C. Gorman, B. M. Jackson, Y. Hiramatsu, N. Gikakis, S. T. Kelley, M. G. Sutton, T. Plappert, and L. H. Edmunds. Distortions of the mitral valve in acute ischemic mitral regurgitation. Ann. Thorac. Surg. 64:1026–1031, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    Gorman, J. H. III, B. G. Krishanu, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–726, 1996.PubMedGoogle Scholar
  6. 6.
    Gorman, J. H. III, B. M. Jackson, R. C. Gorman, S. T. Kelly, N. Gikakis, and H. Edmunds. Papillary muscle discoordination rather than increased annular area facilitates mitral regurgitation after acute posterior myocardial infaction. Circulation 96(suppl II):124–127, 1997.Google Scholar
  7. 7.
    He, S., J. D. Lemmon, M. W. Weston, M. O. Jensen, R. A. Levine, and A. P. Yoganathan. Mitral valve compensation for annular dilation: In vitro study into the mechanisms of functional mitral regurgitation with an adjustable annulus model. J. Heart Valve Dis. 8:294–302, 1999.PubMedGoogle Scholar
  8. 8.
    He, S., J. H. Jimenez, Z. He, and A. P. Yoganathan. Mitral leaflet geometrical perturbations with papillary muscle displacement and annular dilation: An in-vitro study of ischemic mitral regurgitation. J. Heart Valve Dis. 12(3):300–307, 2003.PubMedGoogle Scholar
  9. 9.
    Jimenez, J. H., D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and papillary muscle position. Ann. Biomed. Eng. 31:1171–1181, 2003.CrossRefPubMedGoogle Scholar
  10. 10.
    Kalmanson, D. The mitral valve a pluridisciplinary approach. Publishing Science Group, Inc. Chapter 1–5:3–45, 1976.Google Scholar
  11. 11.
    Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. Ning Li, M. Sirvarajan, E. L. Bolson, M. Zeppa, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:243–250, 2000.CrossRefGoogle Scholar
  12. 12.
    Kaul, S., J. D. Pearlman, D. A. Touchstone, and L. Esquival. Prevalence and mechanism of mitral regurgitation in absence of intrinsic abnormalities of the mitral leaflets. Am. Heart J. 118:963–972, 1989.CrossRefPubMedGoogle Scholar
  13. 13.
    Levine, R. A., M. O. Triulizi, P. Harrigan, and A. E. Weyman . The relationship of the mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75(IV):756–767, 1987.PubMedGoogle Scholar
  14. 14.
    Liao, J., and I. Vesely. A structural basis for the size-related mechanical properties of mitral valve chordae tendineae. J. Biomech. 36(8):1125–1133, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Lomholt, M., S. L. Nielsen, S. B. Hansen, N. T. Andersen, and J. M. Hasenkam. Differential tension between secondary and primary mitral chordae in acute in-vivo porcine model. J. Heart Valve Dis. 11:337–345, 2002.PubMedGoogle Scholar
  16. 16.
    Mahbubul, A. The atrioventricular plane displacement as a means of evaluating left ventricular systolic function in acute myocardial infarction. Clin. Cardiol. 14:588–594, 1991.PubMedGoogle Scholar
  17. 17.
    Masako, M., O. Takashi, M. Yuichiro, Y. Hirotsugu, T. Tomotsugu, W. Tetsuzo, and I. Susumu. Early systolic mitral annular motion velocities response to dobutamine infusion predict myocardial viability in patients with previous myocardial infarction. Am. Heart J. 143:552–558, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Messas, E., J. L. Guerrero, M. D. Handschumacher, C. Conrad, C. Chow, S. Sullivan, A. P. Yoganathan, and R. A. Levine. Chordal cutting, a new therapeutic approach for ischemic mitral regurgitation. Circulation 104:1958–1963, 2001.PubMedGoogle Scholar
  19. 19.
    Mikami, T., M. Hashimoto, T. Kudo, T. Sugawara, S. Sakamoto, and H. Yasuda. Mitral valve and its ring in hypertrophic cardiomyopathy, a mechanism creating surplus mitral leaflet involved in systolic anterior motion. Jpn. Circ. J. 52:597–602, 1998.Google Scholar
  20. 20.
    Morten, O. J., A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall three dimensional force vector measurement system ABME 10:111–124, 2000.Google Scholar
  21. 21.
    S. L. Nielsen, H. Hygaard, A. A. Fontaine, J. M. Hasenkam, S. He, N. T. Andersen, and A. P. Yoganathan. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33:843–853, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Pai, R. G., M. Tanimoto, W. Jintapakorn, J. Azevedo, N. G. Pandian, and P. M. Shah. Volume-rendered three-dimensional dynamic anatomy of the mitral annulus using transesophageal echocardiographic technique. J. Heart Valve Dis. 4:625–627, 1995.Google Scholar
  23. 23.
    Sedransk, K. L., J. G. Allen, and I. Vesely. Failure mechanics of mitral valve chordae tendineae. J. Heart Valve Dis. 11:644–650, 2002.PubMedGoogle Scholar
  24. 24.
    Toumanidis, S. T., D. A. Sideris, C. M. Papamichael, and S. D. Moulopoulos. The role of mitral annulus motion in left ventricular function. Acta Cardiol. 4:331–348, 1992.Google Scholar
  25. 25.
    Tibayan, F. A., D. T. Lai, T. A. Timek, P. Dagum, D. Liang, M. K. Zasio, G. T. Daughters, D. C. Miller, and N. B. Ingels. Alterations in left ventricular curvature and principal strains in dilated cardiomyopathy with functional mitral regurgitation. J. Heart Valve Dis. 12:292–299, 2003.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Jorge Hernan Jimenez
    • 1
  • Dennis Dam Soerensen
    • 1
  • Zhaoming He
    • 1
  • Jennifer Ritchie
    • 1
  • Ajit P. Yoganathan
    • 1
    • 2
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlanta
  2. 2.School of Biomedical EngineeringGeorgia Institute of TechnologyAtlanta

Personalised recommendations