Annals of Biomedical Engineering

, Volume 33, Issue 5, pp 656–660 | Cite as

Smelling Renal Dysfunction via Electronic Nose

  • Andreas Voss
  • Vico Baier
  • Renate Reisch
  • Katharina von Roda
  • Peter Elsner
  • Horst Ahlers
  • Günter Stein
Article

Abstract

The human body odor plays an important role in social communication in various situations, like the olfactory identification of partners and relatives as well as in parents–child interactions. In patients with renal dysfunction the compound of sweat and volatile gases is changed because of the limited ability for removing metabolic products from the blood. The regulation of electrolyte composition and acid–base balance are also altered so that the body odor of these patients may be significantly influenced by these disorders. We show the ability of an electronic nose to detect changes in the human body odor in consequence of renal dysfunction by reducing multivariate sensor signals with principal component analysis to its first and second principal odor component (POC). All healthy subjects could clearly be distinguished from patients with renal failure using quadratic discriminant analysis, whereas a correct classification of 95.2% (98.4% using 1st–3rd POC) of patients between end stage renal failure and chronic renal failure was found. This methodology of analyzing human body odor may also provide new approaches for investigating symptoms of renal failure and for diagnosing other diseases of internal or cutaneous origin.

Keywords

Body odor Electronic nose Principal component analysis Discriminant analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    al-Tamer, Y. Y., and E. A. Hadi. Age dependent reference intervals of glucose, urea, protein, lactate and electrolytes in thermally induced sweat. Eur. J. Clin. Chem. Clin. Biochem. 32(2):71–77, 1994.PubMedGoogle Scholar
  2. 2.
    al-Tamer, Y. Y., E. A. Hadi, and I. I. al-Badrani. Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol. Res. 25(5):337–340, 1997.CrossRefPubMedGoogle Scholar
  3. 3.
    Croux, C., and C. Dehon. Robust linear discriminant analysis using S-estimators. Can. J. Statist. 29:473–492, 2001.Google Scholar
  4. 4.
    Griep, M. I., P. Van der Niepen, J. J. Sennesael, T. F. Mets, D. L. Massart, and D. L. Verbeelen. Odor perception in chronic renal disease. Nephrol. Dial Transplant. 12(10):2093–2098, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    Haze, S., Y. Gozu, S. Nakamura, Y. Kohno, K. Sawano, H. Ohta, and K. Yamazaki. 2-Nonenal newly found in human body odor tends to increase with aging. J. Invest. Dermatol. 116(4):520–524, 2001.CrossRefPubMedGoogle Scholar
  6. 6.
    Jackson, J. E. A User’s Guide to Principal Components, pp. 1–25, Wiley, 1991.Google Scholar
  7. 7.
    Jaeger, G. Stoffwirkung in Lebewesen. Grundgesetzliches für Lebenslehre und Lebenspraxis. Leipzig. Ernst Günther’s Verlag, 1892.Google Scholar
  8. 8.
    Löber, G., and H. Ahlers. Patent DE 101 09 148 A 1. Anordnung zur Detektion von Körperflüssigkeiten und—bestandteilen.Google Scholar
  9. 9.
    Mantini, A., C. Di Natale, A. Magagnano, R. Paolesse, A. Finazzi-Agro, and A. D’Amico. Biomedical application of an electronic nose. Crit. Rev. Biomed. Eng. 28(3–4):481–485, 2000.PubMedGoogle Scholar
  10. 10.
    Senol, M., and P. Fireman. Body odor in dermatologic diagnosis. Cutis 63(2):107–111, 1999.PubMedGoogle Scholar
  11. 11.
    Simenhoff, M. L., J. F. Burke, J. J. Saukkonen, A. T. Ordinario, and R. Doty. Biochemical profile or uremic breath. N. Engl. J. Med. 297(3):132–135, 1977.PubMedGoogle Scholar
  12. 12.
    Taylor, R. P., A. A. Polliack, and D. L. Bader. The analysis of metabolites in human sweat: analytical methods and potential application to investigation of pressure ischaemia of soft tissues. Ann. Clin. Biochem. 31(Pt 1):18–24, 1994.PubMedGoogle Scholar
  13. 13.
    Thaler, E. R., D. W. Kennedy, and C. W. Hanson. Medical applications of electronic nose technology: review of current status. Am. J. Rhinol. 15(5):291–295, 2001.PubMedGoogle Scholar
  14. 14.
    Virga, G., S. Mastrosimone, G. Amici, G. Munaretto, F. Gastaldon, and A. Bonadonna. Symptoms in hemodialysis patients and their relationship with biochemical and demographic parameters. Int. J. Artif. Organs 21(12):788–793, 1998.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Andreas Voss
    • 1
    • 5
  • Vico Baier
    • 1
  • Renate Reisch
    • 2
  • Katharina von Roda
    • 3
  • Peter Elsner
    • 4
  • Horst Ahlers
    • 2
  • Günter Stein
    • 3
  1. 1.Department of Medical EngineeringUniversity of Applied SciencesJenaGermany
  2. 2.Jenasensoric e.V.Germany
  3. 3.Department of Internal Medicine III, Division of NephrologyFriedrich-Schiller-University of JenaGermany
  4. 4.Department of Dermatology and AllergologyFriedrich-Schiller-University of JenaGermany
  5. 5.University of Applied Sciences JenaJenaGermany

Personalised recommendations