Advertisement

Annals of Biomedical Engineering

, Volume 32, Issue 12, pp 1599–1606 | Cite as

Nonhomogeneous Deformation in the Anterior Leaflet of the Mitral Valve

  • Ling Chen
  • Andrew D. McCulloch
  • Karen May-Newman
Article

Abstract

In the mitral valve, regional variations in structure and material properties combine to affect the biomechanics of the entire valve. Previous biaxial testing has shown that mitral valve leaflet tissue is highly extensible, and exhibits nonlinear, anisotropic material properties. In this study, experimental measurements of mitral valve leaflet deformation under quasi-static pressure loading were performed on isolated porcine hearts. Biplane video images of markers placed on the anterior leaflet surface were used to reconstruct the 3D position of the markers at several pressure levels over the physiological range. A least-squares finite-element method was used to fit parametric models to the markers and to calculate the deformation over the surface. The results showed that the leaflet deformations were anisotropic, exhibiting a large nonhomogeneous radial stretch and a small circumferential stretch. This information can be used to better understand how the valve deforms under physiological loading, and to help design treatments for valve problems, such as mitral regurgitation.

Stretch ratio Least squares Pressure loading Mitral annulus Coaptation line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaradehyde-treated aortic valve cusp: Part II–a structural constitutive model. J. Biomech. Eng. 122:327–335, 2000.Google Scholar
  2. 2.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–part I: Experimental results. J. Biomech. Eng. 122:23–30, 2000.Google Scholar
  3. 3.
    Chen, L., A. D. McCulloch, and K. May-Newman. Nonhomogeneous Surface Strain on the Mitral Valve. Charlotte, NC: Twenty Second Southern Biomedical Engineering Conference, 2003.Google Scholar
  4. 4.
    Chen, L., F. C. P. Yin, and K. May-Newman. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126:244–251, 2004.Google Scholar
  5. 5.
    Ghista, D. N., and A. P. Rao. Mitral-valve mechanics–stress–strain characteristics of excised leaflets, analysis of its functional mechanics and its medical application. Med. Biol. Eng. 11(6):691–702, 1973.Google Scholar
  6. 6.
    Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Mol. Biol. 52:101–164, 1989.Google Scholar
  7. 7.
    Ivan, E. Sutherland. Three-dimensional data input by tablet. Proceedings of the IEEE, 62(4):453–461, 1974.CrossRefGoogle Scholar
  8. 8.
    Jean, F. Obadia., Cendrine Casali, Jean F. Chassignolle., and Marc Janier. Mitral subvalvular apparatus: Different functions of primary and second chordae. Circulation 96(9):3124–3128, 1997.Google Scholar
  9. 9.
    Komoda, T., R. Hetzer., and C. Uyama. Mitral annular function assessed by 3D imaging of mitral valve surgery. J. Heart Valve Dis. 3:483–490, 1994.Google Scholar
  10. 10.
    Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: Parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992.Google Scholar
  11. 11.
    Kunzelman, K. S., R. P. Cochran, C. J. Chuong, and R. C. Eberhart. Engineering analysis of mitral valve repair. Dallas, TX: Sixth Southern Biomedical Engineering Conference, 1987.Google Scholar
  12. 12.
    Kunzelman, K. S., M. S. Sacks, R. P. Cochran, and A. C. Eberhardt. Mitral valve leaflet collagen distribution by laser analysis. Seventh South. Biomed. Eng. Conf. 82–85, 1988.Google Scholar
  13. 13.
    Kyriacou, S. K., C. Schwab., and J. D. Humphrey. Finite element analysis of nonlinear orthotropic hyperelastic membranes. Comput. Mechanics 18:269–278, 1996.zbMATHGoogle Scholar
  14. 14.
    Lam, J. H., N. Ranganathan., E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 41(3):449–458, 1970.Google Scholar
  15. 15.
    Lis, Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg., and M. J. Davies. Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem. J. 244(3):597–603, 1987.Google Scholar
  16. 16.
    May-Newman, K. Effect of left ventricular pressure on deformation in the mitral valve (Abstract). Proceedings of the First Joint BMES/EMBS Conference, Atlanta, GA, 1999.Google Scholar
  17. 17.
    May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.Google Scholar
  18. 18.
    May-Newman, K., and F. C. A. Yin. Constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.Google Scholar
  19. 19.
    Mazhari, R., J. H. Omens, L. K. Waldman, and A. D. McCulloch. Regional myocardial perfusion and mechanics: A model-based method of analysis. Ann. Biomed. Eng. 26(5):743–755, 1998.Google Scholar
  20. 20.
    McCulloch, A. D., B. H. Smaill, and P. J. Hunter. Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Physiol. 252(1 Pt 2):H233–H241, 1987.Google Scholar
  21. 21.
    Meier, G. D., M. C. Ziskin, W. P. Santamore, and A. A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng. BME-27(6):319–329, 1980.Google Scholar
  22. 22.
    Miller, G. E., J. F. Hunter, and W. M. Lively. A note on mitral valve mechanics: A pre-stressed leaflet concept. J. Biomech. 14(5):373–375, 1981.Google Scholar
  23. 23.
    Chevaugeon, N., E. Verron., and B. Peseux. Finite element analysis of nonlinear transversely isotropic hyperelastic membranes for thermoforming applications. Eur. Congr. Comput. Methods Appl. Sci. Eng. 1–17, 2000.Google Scholar
  24. 24.
    Nielsen, P. M. F., P. J. Hunter, and B. H. Smaill. Biaxial testing of membrane biomaterials: Testing equipment and procedures. J. Biomech. Eng. 113:295–300, 1991.Google Scholar
  25. 25.
    Nielsen, S. L., H. Nygaard., A. A. Fontaine, J. M. Hasenkam, S. He., N. T. Andersen, and A. P. Yoganathan. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33(3):843–853, 1999.Google Scholar
  26. 26.
    Ormiston, J., P. Shah., C. Tei., and M. Wong. Size and motion of the mitral valve annulus in man. Circulation 64:113–120, 1981.Google Scholar
  27. 27.
    Ranganathan, N., J. H. Lam, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. II. The value leaflets. Circulation 41(3):459–467, 1970.Google Scholar
  28. 28.
    Sacks, M. S., Z. He., L. Baijens., S. Wanant., P. Shan., H. Sugimoto., and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 1281–1290, 2002.Google Scholar
  29. 29.
    Salisbury, P. F., C. E. Cross, and P. A. Rieben. Chorda tendinea tension. Am. J. Physiol. (Heart) 205:385–392, 1963.Google Scholar
  30. 30.
    Silverman, M. E., and J. W. Hurst. The mitral complex: Interaction of the anatomy, physiology and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae and papillary muscles. Am. Heart J. 76(3):399–418, 1968.Google Scholar
  31. 31.
    Treloar, L. R. G. Strains in an inflated rubber sheet, and the mechanism of bursting. Trans. Inst. Rub. Ind. 19:201–212, 1944.Google Scholar
  32. 32.
    Tsakiris, A. G., G. von Bernuth, G. C. Rastelli, M. J. Bourgeois, J. L. Titus, and E. H. Wood. Size and motion of the mitral valve annulus in anesthetized intact dogs. J. Appl. Physiol. 30(5):611–618, 1971.Google Scholar
  33. 33.
    Vesely, I., D. R. Boughner, and J. Leeson-Dietrich. Bioprosthetic valve tissue viscoelasticity: Implications on accelerated pulse duplicator testing. Ann. Thorac. Surg. 60:S379–S383, 1995.Google Scholar
  34. 34.
    Yin, F. C. P. Applications of the finite-element method to ventricular mechanics. CRC Crit. Rev. Biomed. Eng. 12:311–342, 1985.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Ling Chen
    • 1
  • Andrew D. McCulloch
    • 2
  • Karen May-Newman
    • 1
  1. 1.Department of Mechanical EngineeringSan Diego State UniversitySan DiegoCA
  2. 2.Department of BioengineeringUniversity of CaliforniaSan DiegoCA

Personalised recommendations