African Archaeological Review

, Volume 35, Issue 1, pp 1–19 | Cite as

Using Trampling Modification to Infer Occupational Intensity During the Still Bay at Blombos Cave, Southern Cape, South Africa

  • Jerome P. Reynard
  • Christopher S. Henshilwood
Original Article


Demography probably had a significant influence on the transmission of cultural innovation during the late Pleistocene. In enclosed sites such as rockshelters, trampling marks are likely direct evidence for human occupations and can possibly be used to infer occupational patterns. In this study, we explore trampling modification as a proxy for occupational intensity. We examined trampling data at the Middle Stone Age site of Blombos Cave in South Africa to investigate whether these marks may inform on occupational intensity during the Still Bay period—a significant era for the development of behavioural modernity. Trampling is defined by pitting, scratches, abrasion and linear marks. These marks were then compared to other taphonomic proxies (e.g., faunal density per volume, transverse fractures, non-anthropogenic modification) to explore the relationships between these indicators. Our results indicate that trampling modifications can provide information on a site’s occupational history and that the data indicate that there are two phases within the Blombos sequence showing more intense/frequency occupations, corresponding to the early and middle Still Bay deposits.


Middle Stone Age Still Bay Blombos Cave Trampling Taphonomy Occupational intensity 


Le facteur démographique a très vraisemblablement eu une influence marquée sur la transmission des innovations culturelles à la fin du Pléistocène. Dans les sites fermés tels que les abris sous-roche, les traces liées au piétinement représentent des preuves directes d’occupation humaine et peuvent potentiellement être utilisées pour déduire le mode d’occupation des gisements. Dans cette étude, nous examinons les modifications dues au piétinement en tant qu’indices d’intensité d’occupation des sites. Les données sur le piétinement du gisement Middle Stone Age de Blombos Cave en Afrique du Sud ont ainsi été analysées afin d’examiner dans quelle mesure elles pouvaient permettre de documenter le(s) mode(s) d’occupation du site, au cours du Still Bay, une période-clé au regard du développement de la modernité culturelle. Le piétinement est. défini par un ensemble de modifications de la surface osseuse, incluant perforations (« pitting »), éraflures (« scratches »), abrasion et stries linéaires. Ces traces ont ensuite été comparées à d’autres données d’ordre taphonomiques (notamment: densité de restes de faune par volume de sédiment, fractures transversales et modifications d’origine non-anthropique), afin d’explorer la nature des relations entre ces différents indices. Nos résultats indiquent que les modifications liées au piétinement peuvent fournir des informations relatives à l’occupation du site. Par ailleurs, les données indiquent qu’il existe deux phases au sein de la séquence de Blombos associées à des périodes d’occupation plus intenses et/ou plus fréquentes, correspondant aux dépôts du Still Bay ancien et moyen.



We are grateful to Shaw Badenhorst, Wynand van Zyl and the staff at the Ditsong National Museum of Natural History (formerly the Transvaal Museum) for their assistance. We thank Sarah Wurz, Tyler Faith, Kathy Kuman and anonymous reviewers for their useful comments, and Aurore Val for translating the abstract. Special thanks to Magnus Haaland for designing the stratigraphic map of Blombos Cave.

Compliance with Ethical Standards

Funding: JR is funded by a South African National Research Foundation (NRF) Thuthuka Grant (grant number: 107082) a grant from the Palaeontological Scientific Trust (PAST), and a Faculty Research Committee (FRC) Grant and an Enabling Grant through the Diversifying the Academy from the University of the Witwatersrand. Funding for the research at Blombos Cave and Klipdrift Shelter was provided by an NRF/Department of Science and Technology-funded South African Research Chair (SARChI) in the Origins of Modern Human Behaviour at the University of the Witwatersrand, South Africa held by CSH, at the Evolutionary Studies Institute in the University of the Witwatersrand. Additional funding for JR was provided by CSH’s SARChI Chair. This work was partly supported by the Research Council of Norway through its Centre’s of Excellence funding scheme, Centre for Early Sapiens Behaviour (SapienCE), project number 262618.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Andrefsky, W. (2005). Lithics: Macroscopic approaches to analysis (Cambridge Manuals in Archaeology). Cambridge: Cambridge University Press.Google Scholar
  2. Backwell, L., Parkinson, A. H., Roberts, E. M., d’Errico, F., & Huchet, J.-B. (2012). Criteria for identifying bone modification by termites in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338, 72–87.CrossRefGoogle Scholar
  3. Barton, M., Bernabeu, J., Emili Aura, J., & Garcia, O. (1999). Land-use dynamics and socioeconomic change: An example from the Polop AltoValley. American Antiquity, 64, 609–634.CrossRefGoogle Scholar
  4. Barton, C. M., & Riel-Salvatore, J. (2014). The formation of lithic assemblages. Journal of Archaeological Science, 46, 334–352.CrossRefGoogle Scholar
  5. Behrensmeyer, A. K. (1978). Taphonomic and ecological information from bone weathering. Paleobiology, 4, 150–162.CrossRefGoogle Scholar
  6. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319(6056), 768–771.CrossRefGoogle Scholar
  7. Binford, L. R. (1977). For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling. New York: Academic Press.Google Scholar
  8. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  9. Binford, L. R. (1980). Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeological site formation. American Antiquity, 45, 4–20.CrossRefGoogle Scholar
  10. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–582.CrossRefGoogle Scholar
  11. Blumenschine, R. J., & Selvaggio, M. (1988). Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature, 333, 763–765.CrossRefGoogle Scholar
  12. Blumenschine, R. J., Marean, C. W., & Capaldo, S. D. (1996). Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks and carnivore tooth marks on bone surfaces. Journal of Archaeological Science, 23, 493–507.CrossRefGoogle Scholar
  13. Boschian, G., & Saccá, D. (2010). Ambiguities in human and elephant interactions? Stories of bone, sand and water from Castel di Guido (Italy). Quaternary International, 214, 3–16.CrossRefGoogle Scholar
  14. Brain, C. K. (1967). Bone weathering and the problem of bone pseudo-tools. South African Journal of Science, 63, 97–99.Google Scholar
  15. Brain, C. K. (1974). Some suggested procedures in the analysis of bone accumulations from southern African quaternary sites. Annals of the Transvaal Museum, 29(1), 1–8.Google Scholar
  16. Brain, C. K. (1975). An introduction to the South African australopithecine bone accumulations. In A. T. Clason (Ed.), Archaeozoological Studies (pp. 109–119). Amsterdam: North Holland.Google Scholar
  17. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  18. Bunn, H. T. (1983). Comparative analysis of modern bone assemblages from a San hunter-gatherer camp in the Kalahari Desert, Botswana, and from a spotted hyena den near Nairobi, Kenya. In J. Clutton-Brock & C. Grigson (Eds.), Animals and archaeology: 1. Hunters and their prey (pp. 143-148). BAR international series 163. Oxford: Archaeopress.Google Scholar
  19. Butzer, K. W. (1982). Archaeology as human ecology: Method and theory for a contextual approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Clark, J. L. (2009). Testing models on the emergence and nature of modern human behaviour: Middle Stone Age fauna from Sibudu Cave (South Africa). PhD dissertation, University of Michigan.Google Scholar
  21. Clark, J. L. (2011). The evolution of human culture during the late Pleistocene: Using fauna to test models on the emergence and nature of “modern” human behaviour. Journal of Anthropological Archaeology, 30, 273–291.CrossRefGoogle Scholar
  22. Clark, J. L. (2017). The Howieson's Poort fauna from Sibudu Cave: Documenting continuity and change within Middle Stone Age industries. Journal of Human Evolution, 107, 49–70.CrossRefGoogle Scholar
  23. d’Errico, F., & Henshilwood, C. S. (2007). Additional evidence for bone technology in the southern African Middle Stone Age. Journal of Human Evolution, 52, 142–163.CrossRefGoogle Scholar
  24. d’Errico, F., & Backwell, L. (2003). Possible evidence of bone tool shaping by Swartkrans early hominids. Journal of Archaeological Science, 30, 1559–1576.CrossRefGoogle Scholar
  25. Discamps, E., & Henshilwood, C. S. (2015). Intra-site variability in the Still Bay fauna at Blombos Cave: Implications for explanatory models of the Middle Stone Age cultural and technological evolution. PLoS One, 10(12), e0144866.CrossRefGoogle Scholar
  26. Dominguez-Rodrigo, M., De Juana, S., Galan, A. B., & Rodriguez, M. (2009). A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science, 36, 2643–2653.CrossRefGoogle Scholar
  27. Driver, J. C. (2005). Crow Canyon Archaeological Centre manual for the description of vertebrate remains. Cortez: Crow Canyon Archaeological Centre.Google Scholar
  28. Dusseldorp, G. L., & Langejans, G. H. J. (2015). ‘Trapping the past’? Hunting for remote capture techniques and planned coastal exploitation during MIS 5 at Blombos Cave and Klasies River, South Africa. Analecta Praehistorica Leidensia, 45, 15–27.Google Scholar
  29. Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. Journal of Human Evolution, 65, 715–730.CrossRefGoogle Scholar
  30. Faith, J. T., & Thompson, J. C. (2013). Fossil evidence for seasonal calving and migration of extinct blue antelope (Hippotragus leucophaeus) in southern Africa. Journal of Biogeography, 40, 2108–2118.CrossRefGoogle Scholar
  31. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications: 10001 + images of fossil and recent mammal bone modification. New York: Springer.CrossRefGoogle Scholar
  32. Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 61–72). Orono: University of Maine Centre for the Study of the First Americans.Google Scholar
  33. Fisher, E. C., Bar-Matthews, M., Jerardino, A., & Marean, C. (2010). Middle and late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews, 29, 1382–1398.CrossRefGoogle Scholar
  34. Gaudzinski-Windheuser, S., Kindler, L., Rabinovich, R., & Goren-Inbar, N. (2010). Testing heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling experiments at the Early-Middle Pleistocene site of Gesher Benot Ya’ aqov (Israel). Journal of Archaeological Science, 37, 3170–3190.CrossRefGoogle Scholar
  35. Gifford-Gonzalez, D. P. (1989). Ethnographic analogues for interpreting modified bones: Some case studies from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono: University of Maine Centre for the Study of the First Americans.Google Scholar
  36. Grine, F. E., Henshilwood, C. S., & Sealy, J. C. (2000). Human remains from Blombos Cave, South Africa: (1997–1998 excavations). Journal of Human Evolution, 38, 755–765.CrossRefGoogle Scholar
  37. Hall, S. L. (1990). Hunter-gatherer-fishers of the Fish River Basin: A contribution to the Holocene prehistory of the Eastern Cape. University of Stellenbosch: PhD dissertation.Google Scholar
  38. Henry, D. O. (1989). From foraging to agriculture: The Levant at the end of the Ice Age. Philadelphia: University of Pennsylvania Press.CrossRefGoogle Scholar
  39. Henshilwood, C. S. (2005). Stratigraphic integrity of the Middle Stone Age levels at Blombos Cave. In F. d’Errico & F. Backwell (Eds.), From tools to symbols: From early hominids to modern humans (pp. 441–458). Johannesburg: Witwatersrand University Press.Google Scholar
  40. Henshilwood, C. S. (2012). Late Pleistocene techno-traditions in southern Africa: A review of the Still Bay and Howiesons Poort, c. 75–59 ka. Journal of World Prehistory, 25, 205–237.CrossRefGoogle Scholar
  41. Henshilwood, C. S., & Sealy, J. C. (1997). Bone artefacts from the Middle Stone Age at Blombos Cave, southern Cape, South Africa. Current Anthropology, 38, 890–895.CrossRefGoogle Scholar
  42. Henshilwood, C. S., & Marean, C. W. (2003). The origin of modern human behavior: Critique of the models and their test implications. Current Anthropology, 44, 627–651.CrossRefGoogle Scholar
  43. Henshilwood, C. S., Sealy, J. C., Yates, R., Cruz-Uribe, K., Goldberg, P., Grine, F. E., Klein, R. G., Poggenpoel, C., van Niekerk, K., & Watts, I. (2001a). Blombos Cave, Southern Cape, South Africa: Preliminary report on the 1992 – 1999 excavations of the Middle Stone Age levels. Journal of Archaeological Science, 28, 421–448.CrossRefGoogle Scholar
  44. Henshilwood, C. S., d’Errico, F., Marean, C. W., Milo, R., & Yates, R. J. (2001b). An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: Implication for the origins of modern human behaviour, symbolism and language. Journal of Human Evolution, 41, 631–678.Google Scholar
  45. Henshilwood, C. S., d’Errico, F., Yates, R., Jacobs, Z., Tribolo, C., Duller, G. A. T., Mercier, N., Sealy, J. C., Valladas, H., Watts, I., & Wintle, A. G. (2002). Emergence of modern human behaviour: Middle Stone Age engravings from South Africa. Science, 295, 1278–1280.CrossRefGoogle Scholar
  46. Henshilwood, C., d’Errico, F., Vanhaeren, M., van Niekerk, K., & Jacobs, Z. (2004). Middle Stone Age shell beads from South Africa. Science, 304, 404.CrossRefGoogle Scholar
  47. Henshilwood, C. S., d’Errico, F., & Watts, I. (2009). Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution, 57, 27–47.CrossRefGoogle Scholar
  48. Henshilwood, C. S., d’Errico, F., Van Niekerk, K., Coquinot, Y., Jacobs, Z., Lauritzen, S.-E., Menu, M., & García-Moreno, R. (2011). A 100,000 year ochre processing workshop at Blombos Cave, South Africa. Science, 334, 219–222.CrossRefGoogle Scholar
  49. Hillestad-Nel, T., & Henshilwood, C. S. (2016). The small mammal sequence from the c. 76–72 ka Still Bay levels at Blombos Cave, South Africa – Taphonomic and palaeoecological implications for human behaviour. PLoS One, 11(8), e0159817.CrossRefGoogle Scholar
  50. Jacobs, Z., Wintle, A. G., & Duller, G. A. T. (2003a). Optical dating of dune sand from Blombos Cave, South Africa: I—multiple grain data. Journal of Human Evolution, 44, 599–612. Google Scholar
  51. Jacobs, Z., Wintle, A. G., & Duller, G. A. T. (2003b). Optical dating of dune sand from Blombos Cave, South Africa: II—single grain data. Journal of Human Evolution, 44, 613–625.Google Scholar
  52. Jacobs, Z., Duller, G. A. T., Wintle, A. G., & Henshilwood, C. S. (2006). Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optimal dating of single and multiple grains of quartz. Journal of Human Evolution, 51, 255–273.CrossRefGoogle Scholar
  53. Jacobs, Z., Hayes, E. H., Roberts, R. G., Galbraith, R. F., & Henshilwood, C. S. (2012). An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: Further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. Journal of Archaeological Science, 40, 579–594.CrossRefGoogle Scholar
  54. Jerardino, A. (1995). The problem with density values in archaeological analyses: A case study from Tortoise Cave, Western Cape, South Africa. South African Archaeological Bulletin, 50, 21–27.CrossRefGoogle Scholar
  55. Jerardino, A. (2010). Large shell middens in Lamberts Bay, South Africa: A case of hunter–gatherer resource intensification. Journal of Archaeological Science, 37, 2291–2302.CrossRefGoogle Scholar
  56. Jerardino, A. (2015). Shell density as proxy for reconstructing prehistoric aquatic resource exploitation, perspectives from southern Africa. Journal of Archaeological Science: Reports, 6, 637–644.CrossRefGoogle Scholar
  57. Johnson, E. (1985). Current developments in bone technology. In M. B. Schiffer. In Advances in archaeological method and theory (Vol. 8, pp. 157–235). New York: Academic Press.CrossRefGoogle Scholar
  58. Karkanas, P., Brown, K. S., Fisher, E. C., Jacobs, Z., & Marean, C. W. (2015). Interpreting human behaviour from depositional rates and combustion features through the study of sedimentary microfacies at site Pinnacle Point 5-6, South Africa. Journal of Human Evolution, 85, 1–21.CrossRefGoogle Scholar
  59. Karr, L. P., & Outram, A. K. (2012). Actualistic research into dynamic impact and its implications for understanding differential bone fragmentation and survivorship. Journal of Archaeological Science, 39, 3443–3449.CrossRefGoogle Scholar
  60. Kidwell, S. M. (1985). Paleobiological and sedimentological implications of fossil concentrations. Nature, 318, 457–460.CrossRefGoogle Scholar
  61. Kidwell, S. M. (1986). Models for fossil concentrations: Paleobiologic implications. Paleobiology, 12, 6–24.CrossRefGoogle Scholar
  62. Klein, R. G. (1975). Paleoanthropological implications of the non-archaeological bone assemblage from Swartklip 1, South-Western Cape Province, South Africa. Quaternary Research, 5, 275–278.CrossRefGoogle Scholar
  63. Klein, R. G., & Cruz-Uribe, K. (1984). The analyses of animal bones from archaeological sites. Chicago: University of Chicago Press.Google Scholar
  64. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  66. Madgwick, R. (2014). What makes bones shiny? Investigating trampling as a form of bone abrasion. Archaeological and Anthropological Sciences, 6, 163–173.CrossRefGoogle Scholar
  67. Malan, J. A. (1989). Lithostratigraphy of the Wankoe Formation (Bredasdorp group). Pretoria: Republic of South Africa, Department of Mineral and Energy Affairs, Geological Survey.Google Scholar
  68. Marean, C. W. (1991). Measuring the postdepositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18, 677–694.CrossRefGoogle Scholar
  69. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. (1992). Captive hyena bone choice and destruction, the schlepp effect, and Olduvai archaeofaunas. Journal of Archaeological Science, 19, 101–121.CrossRefGoogle Scholar
  70. Marean, C. W., Abe, Y., Frey, C., & Randall, R. (2000). Zooarchaeological and taphonomic analysis of the die Kelders cave 1 layers 10 and 11 Middle Stone Age large mammal fauna. Journal of Human Evolution, 38, 197–233.CrossRefGoogle Scholar
  71. McCall, G. S. (2007). Behavioral ecological models of lithic technological change during the later Middle Stone Age of South Africa. Journal of Archaeological Science, 34(10), 1738–1751.CrossRefGoogle Scholar
  72. McCall, G. S., & Thomas, J. T. (2012). Still Bay and Howiesons Poort foraging strategies: Recent research and models of culture change. African Archaeological Review, 29, 7–50.CrossRefGoogle Scholar
  73. Mellars, P. (2006). Why did modern human populations disperse from Africa ca. 60 000 years ago? A new model. PNAS, 103, 9381–9386.CrossRefGoogle Scholar
  74. Miller, C. E., Goldberg, P., & Berna, F. (2013). Geoarchaeological investigations at Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3432–3452.CrossRefGoogle Scholar
  75. Minichillo, T. (2006). Raw material use and behavioral modernity: Howiesons Poort lithic foraging strategies. Journal of Human Evolution, 50(3), 359–364.CrossRefGoogle Scholar
  76. Mitchell, P. J. (1993). The archaeology of Tloutle Rockshelter, Maseru District, Lesotho. Journal of the National Museum, Bloemfontein, 9, 77–132.Google Scholar
  77. Mourre, V., Villa, P., & Henshilwood, C. S. (2010). Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science, 330, 659–662.CrossRefGoogle Scholar
  78. Myers, T. P., Voorhies, M. R., & Corner, R. G. (1980). Spiral fractures and bone pseudo-tools at paleontological sites. American Antiquity, 45, 483–490.CrossRefGoogle Scholar
  79. Nicholson, R. A. (1992). Bone survival: The effects of sedimentary abrasion and trampling on fresh and cooked bone. International Journal of Osteoarchaeology, 2, 79–90.CrossRefGoogle Scholar
  80. Nicholson, R. A. (1993). A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. Journal of Archaeological Science, 20, 411–428.CrossRefGoogle Scholar
  81. Oliver, J. S. (1989). Analogues and site context: Bone damage from shield trap cave (24CB91), Carbon County, Montana, USA. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 73–98). Orono: University of Maine Centre for the Study of the First Americans.Google Scholar
  82. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15, 535–553.CrossRefGoogle Scholar
  83. Pickering, T. R., Dominguez-Rodrigo, M., Egeland, C. P., & Brain, C. K. (2005). The contribution of limb bone fracture patterns to reconstructing early hominid behaviour at Swartkrans Cave (South Africa): Archaeological application of a new analytical method. International Journal of Osteoarchaeology, 15, 247–260.CrossRefGoogle Scholar
  84. Pobiner, B. (2008). Paleoecological information in predator tooth marks. Journal of Taphonomy, 6, 373–397.Google Scholar
  85. Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behaviour. Science, 324, 1298–1301.CrossRefGoogle Scholar
  86. Reynard, J. P. (2011). The unidentified long bone fragments from the Middle Stone Age Still Bay layers at Blombos Cave, Southern Cape, South Africa. Masters thesis, University of the Witwatersrand.Google Scholar
  87. Reynard, J. P. (2014). Trampling in coastal sites: An experimental study on the effects of shell on bone in coastal sediment. Quaternary International, 330, 156–170.CrossRefGoogle Scholar
  88. Reynard, J. P., & Henshilwood, C. S. (2017). Subsistence strategies during the late Pleistocene in the Southern Cape of South Africa: Comparing the Still Bay of Blombos Cave with the Howiesons Poort of Klipdrift shelter. Journal of Human Evolution, 108, 110–130.CrossRefGoogle Scholar
  89. Reynard, J. P., Discamps, E., Wurz, S., Badenhorst, S., van Niekerk, K. L., & Henshilwood, C. S. (2016a). Occupation intensity and environmental changes at Klipdrift Shelter, southern cape, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 349–364.CrossRefGoogle Scholar
  90. Reynard, J. P., Discamps, E., Badenhorst, S., van Niekerk, K. L., & Henshilwood, C. S. (2016b). Subsistence strategies in the Southern Cape during the Howiesons Poort: Taphonomy and zooarchaeology of Klipdrift Shelter, South Africa. Quaternary International, 404(part B), 2-19.Google Scholar
  91. Richerson, P. J., Boyd, R., & Bettinger, R. L. (2009). Cultural innovations and demographic change. Human Biology, 81, 211–235.CrossRefGoogle Scholar
  92. Riel-Salvatore, J., & Barton, C. M. (2004). Late Pleistocene technology, economic behavior, and land-use dynamics in southern Italy. American Antiquity, 69, 273–290.CrossRefGoogle Scholar
  93. Schiffer, M. B. (1976). Behavioral archaeology. New York: Academic Press.Google Scholar
  94. Schiffer, M. B. (1983). Towards the identification of formation processes. American Antiquity, 48, 675–706.CrossRefGoogle Scholar
  95. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  96. Schlanger, S. H. (1990). Artifact assemblage composition and site occupation duration. In P. E. Minnis & C. L. Redman (Eds.), Perspectives on Southwestern prehistory (pp. 103–121). Boulder: Westview Press.Google Scholar
  97. Schlanger, S. (1991). On manos, metates, and the history of site occupations. American Antiquity, 56(3), 460–474.CrossRefGoogle Scholar
  98. Shennan, S. (2001). Demography and cultural innovation: A model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal, 11, 5–16.CrossRefGoogle Scholar
  99. Shiner, J. I. (2006). Artefact discard and accumulated patterns in stone artefact assemblage composition in surface archaeological deposits from Pine Point and Langwell Stations, western New South Wales. The Rangeland Journal, 28, 183–195.CrossRefGoogle Scholar
  100. Shipman, P., & Rose, J. (1988). Bone tools: An experimental approach. In S. L. Olsen (Ed.), Scanning electron microscopy in archaeology (pp. 303-335). BAR International Series 452. Oxford: Archaeopress.Google Scholar
  101. Shipman, P., Bosler, W., & Davis, K. L. (1981). Butchering of giant geladas at an Acheulian site. Current Anthropology, 22, 257–268.CrossRefGoogle Scholar
  102. Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11, 307–325.CrossRefGoogle Scholar
  103. Steele, T. E., & Klein, R. G. (2009). Late Pleistocene subsistence strategies and resource intensification in Africa. In J.-J. Hublin & M. P. Richards (Eds.), The evolution of human diets: Integrating approaches to the study of Paleolithic diets (pp. 113–126). New York: Springer.CrossRefGoogle Scholar
  104. Steele, T. E., & Klein, R. G. (2013). The Middle and Later Stone Age faunal remains from Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3453–3462.CrossRefGoogle Scholar
  105. Stiner, M. C., Kuhn, S. L., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.CrossRefGoogle Scholar
  106. Stiner, M. C., Munro, N. D., Surovell, T. A., Tchernov, E., & Bar-Yosef, O. (1999). Paleolithic population growth pulses evidenced by small animal exploitation. Science, 283, 190–194.CrossRefGoogle Scholar
  107. Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J., & Kelly, R. (2009). Correcting temporal frequency distributions for taphonomic bias. Journal of Archaeological Science, 36(8), 1715–1724.CrossRefGoogle Scholar
  108. Thompson, J. C. (2008). Zooarchaeological tests for modern human behaviour at Blombos Cave and Pinnacle Point Cave 13B, Southwestern Cape, South Africa. PhD dissertation, Arizona State University.Google Scholar
  109. Thompson, J. C. (2010). Taphonomic analysis of the Middle Stone Age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa. Journal of Human Evolution, 59, 321–339.Google Scholar
  110. Thompson, J. C., & Henshilwood, C. S. (2011). Taphonomic analysis of the Middle Stone Age larger mammal faunal assemblage from Blombos Cave, Southern Cape, South Africa. Journal of Human Evolution, 60, 746–767.CrossRefGoogle Scholar
  111. Thompson, J. C., & Henshilwood, C. S. (2014). Nutritional values of tortoises relative to ungulates from the Middle Stone Age levels at Blombos cave, South Africa: Implications for foraging and social behaviour. Journal of Human Evolution, 67, 33–47.CrossRefGoogle Scholar
  112. Tribolo, C., Mercier, N., Selo, M., Valladas, H., Joron, J.-L., Reyss, J.-L., Henshilwood, C. S., Sealy, J. C., & Yates, R. J. (2006). TL dating of burnt lithics from Blombos Cave (South Africa): Further evidence for the antiquity of modern human behaviour. Archaeometry, 48, 341–357.CrossRefGoogle Scholar
  113. Vanhaeren, M., d'Errico, F., van Niekerk, K. L., Henshilwood, C. S., & Erasmus, R. M. (2013). Thinking strings: Additional evidence for personal ornament use in the Middle Stone Age at Blombos Cave, South Africa. Journal of Human Evolution, 64, 500–517.CrossRefGoogle Scholar
  114. Varien, M. D., & Mills, B. J. (1997). Accumulations research: Problems and prospects for estimating site occupation span. Journal of Archaeological Method and Theory, 4(2), 141–191.CrossRefGoogle Scholar
  115. Villa, P., & Courtin, M. (1986). The interpretation of stratified sites: A view from underground. Journal of Archaeological Science, 10, 267–281.CrossRefGoogle Scholar
  116. Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21, 27–48.CrossRefGoogle Scholar
  117. Wood, W. R., & Johnson, D. L. (1978). A survey of disturbance processes in archaeological site formation. In M. B. Schiffer (Ed.), Advances in archaeological method and theory I (pp. 315–381). New York: Academic Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jerome P. Reynard
    • 1
  • Christopher S. Henshilwood
    • 2
    • 3
  1. 1.School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.SFF Centre for Early Sapiens Behaviour (SapienCE)University of BergenBergenNorway
  3. 3.Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations