African Archaeological Review

, Volume 35, Issue 1, pp 57–85 | Cite as

Naiyena Engol 2 (West Turkana, Kenya): a Case Study on Variability in the Oldowan

  • Hélène RocheEmail author
  • Ignacio de la Torre
  • Adrian Arroyo
  • Jean-Philip Brugal
  • Sonia Harmand
Original Article


Recent years have seen increasing interest in the study of Oldowan technological variability, and the observed inter-assemblage diversity has been attributed to a number of causes, including raw material availability, different hominin species, and cultural and diachronic variation. This paper explores technological variability through the study of Naiyena Engol 2, an Oldowan site dated at c.1.8–1.7 Ma and located in the Nachukui Formation of West Turkana, Kenya. Site formation processes, stratigraphic and taphonomic aspects of Naiyena Engol 2, are reported and are followed by a discussion of the lithic assemblage, focusing on flaking techniques and battering activities. Our results show important diversity of flaking techniques within the same assemblage, suggesting that lithic variability is not only an inter-site phenomenon but also may be found within single Oldowan sites. Additionally, the overall low flake productivity of Naiyena Engol 2 is in sharp contrast with patterns observed in other West Turkana assemblages such as Lokalalei 2, thus also supporting the existence of significant inter-assemblage variability during the Oldowan.


Early Stone Age Oldowan West Turkana Lithic technology Technological variability 


Au cours des dernières années, l’intérêt pour les études de la variabilité technologique de l’Oldowayen s’est accru. La diversité inter-assemblage, maintes fois observée, est attribuée à différentes causes telles la disponibilité des matières premières, la diversité hominienne, ou encore les variations culturelles ou diachroniques. Cet article explore la variabilité technologique à travers l’étude du site Oldowayen de Naiyena Engol 2, qui appartient à la Formation de Nachukui et est daté entre 1.8 et 1.7 millions d’années. La stratigraphie, les principaux aspects taphonomiques et de formation du site et l’ensemble du matériel archéologique sont présentés, suivis par une discussion sur l’ensemble lithique, axée sur les techniques de taille et autres activités de percussion. Nos résultats montrent une importante diversité dans les techniques de taille, suggérant que la variabilité lithique n’est. pas seulement un phénomène inter-sites, mais peut aussi être mise en évidence dans un seul et même ensemble. De plus, la faible production d’éclats à Naiyena Engol contraste fortement avec celle observée dans d’autres sites–dont le site plus ancien de Lokalalei 2C–suggérant aussi une forte variabilité inter-assemblage au cours de l’Oldowayen.


Funding information

Permits to work in West Turkana area were granted by the Office of the President and the Ministry of Home Affairs of the Government of Kenya, with the support of the National Museums of Kenya. Excavations at NY2 were funded by the French Ministry of Foreign Affairs and the CNRS. The analysis of the NY2 assemblage was funded by a Leverhulme Trust project (IN-052) and the French National Research Agency (ANR-12-CULT-0006).

Supplementary material


3D model of the massive core from Fig. 10A. (MP4 520 kb)


3D model of the bipolar core from Fig. 11D. (MP4 222 kb)


3D model of the unifacial peripheral core from Fig. 12A. (MP4 201 kb)


3D model of the bifacial peripheral core from Fig. 12B. (MP4 265 kb)


3D model of the anvil/pitted stone from Fig. 15A. (MP4 132 kb)


  1. Adams, J., Delgado, S., Dubreuil, L., Hamon, C., Plisson, H., & Risch, R. (2009). Functional analysis of macro-lithic artefacts: A focus on working surfaces. In L. J. Costa, L. Eigeland, & F. Sternke (Eds.), Non-flint raw material use in prehistory: Old prejudices and new directions. Proceedings of the XVème Congress of the U.I.S.P.P. (pp. 43–66). Oxford: BAR International Series 1939.Google Scholar
  2. Bordes, F. (1961). Typologie du Paléolithique ancien et moyen. Paris: CNRS Editions.Google Scholar
  3. Brown, F. H., & Feibel, C. S. (1991). Stratigraphy, depositional environments, and paleogeography of the Koobi Fora Formation. In J. M. Harris (Ed.), Koobi Fora Research Project, The fossil ungulates: Geology, fossil artiodactyls, and palaeoenvironments (Vol. 3, pp. 1–30). Oxford: Clarendon Press.Google Scholar
  4. Brown, F. H., & McDougall, I. (2011). Geochronology of the Turkana depression of northern Kenya and southern Ethiopia. Evolutionary Anthropology, 20(6), 217–227.CrossRefGoogle Scholar
  5. Brugal, J.-P., & Roche, H. (2018). Paleoecology and paleoenvironment of early Quaternary faunal assemblages from the Nachukui Formation in Kenya: Insights from the West Turkana Archaeological Project. In S. Reynolds & R. Bobe (Eds.), African paleoecology and human evolution. Cambridge: Cambridge University Press.Google Scholar
  6. Brugal, J.-P., Roche, H., & Kibunjia, M. (2003). Faunes et paléoenvironnements des principaux sites archéologiques plio-pleistocènes de la formation de Nachukui (Ouest Turkana, Kenya). Comptes Rendus Palevol, 2(8), 675–684.CrossRefGoogle Scholar
  7. Crabtree, D. E. (1972). An introduction to flintworking. Pocatello: Idaho State University Museum.Google Scholar
  8. de la Torre, I. (2011). The Early Stone Age lithic assemblages of Gadeb (Ethiopia) and the Developed Oldowan/Early Acheulean in East Africa. Journal of Human Evolution, 60, 768–812.CrossRefGoogle Scholar
  9. de la Torre, I., & Mora, R. (2005a). Unmodified lithic material at Olduvai Bed I: Manuports or ecofacts? Journal of Archaeological Science, 32, 273–285.CrossRefGoogle Scholar
  10. de la Torre, I., & Mora, R. (2005b). Technological strategies in the Lower Pleistocene at Olduvai Beds I & II. Liège: University of Liège Press. ERAUL 112.Google Scholar
  11. de la Torre, I., & Mora, R. (2014). The transition to the Acheulean in East Africa: An assessment of paradigms and evidence from Olduvai Gorge (Tanzania). Journal of Archaeological Method and Theory, 21, 781–823.CrossRefGoogle Scholar
  12. de la Torre, I., Mora, R., Domínguez-Rodrigo, M., Luque, L., & Alcalá, L. (2003). The Oldowan industry of Peninj and its bearing on the reconstruction of the technological skills of Lower Pleistocene hominids. Journal of Human Evolution, 44, 203–224.CrossRefGoogle Scholar
  13. Delagnes, A., & Roche, H. (2005). Late Pliocene hominid knapping skills: The case of Lokalalei 2C, West Turkana, Kenya. Journal of Human Evolution, 48, 435–472.CrossRefGoogle Scholar
  14. Delagnes, A., Lenoble, A., Harmand, S., Brugal, J.-P., Prat, S., Roche, H., & Tiercelin, J.-J. (2006). Interpreting pachyderm single carcass sites in the African Early Pleistocene record: A multidisciplinary approach on the site of Nadung’a 4 (Kenya). Journal of Anthropological Archaeology, 25(2), 448–465.CrossRefGoogle Scholar
  15. Feibel, C. (2011). A geological history of the Turkana Basin. Evolutionary Anthropology, 20(6), 206–216.CrossRefGoogle Scholar
  16. Feibel, C., Brown, F. H., & McDougall, I. (1989). Stratigraphic context of fossil hominids from the Omo group deposits: Northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology, 78, 595–622.CrossRefGoogle Scholar
  17. Goren-Inbar, N., Sharon, G., Melamed, Y., & Kislev, M. E. (2002). Nuts, nut cracking, and pitted stones at Gesher Benot Ya’aqov, Israel. PNAS, 99, 2455–2460.CrossRefGoogle Scholar
  18. Harmand, S. (2005). Matières premières lithiques et comportements techno-économiques des homininés Plio-Pléistocènes du Turkana Occidental, Kenya. PhD dissertation, Université Paris X Nanterre.Google Scholar
  19. Harmand, S. (2009a). Variability in raw material selectivity and techno-economic behaviors in the Early Oldowan: Evidence from the Late Pliocene sites of Lokalalei, West Turkana, Kenya. In E. Hovers & D. R. Braun (Eds.), Interdisciplinary approach to the Oldowan. Vertebrate paleobiology and paleoanthropology book series (pp. 85–97). London: Springer.Google Scholar
  20. Harmand, S. (2009b). Raw material and economic behaviours at Oldowan and Acheulean in the West Turkana region, Kenya. In B. Adams & B. Blades (Eds.), Lithic materials and Paleolithic societies (pp. 3–14). Oxford: Blackwell Publishing.Google Scholar
  21. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Boës, X., Quinn, R. L., Brenet, M., Arroyo, A., Taylor, N., Clément, S., Daver, G., Brugal, J. P., Leakey, L., Mortlock, R. A., Wright, J. D., Lokorodi, S., Kirwa, S., Kent, D. V., & Roche, H. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521, 310–315.CrossRefGoogle Scholar
  22. Harris, J. M., Brown, F. H., & Leakey, M. G. (1988). Stratigraphy and paleontology of Pliocene and Pleistocene localities west of Lake Turkana, Kenya. Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
  23. Isaac, G. L., Harris, J. W. K., & Kroll, E. M. (1997). The stone artefact assemblages: A comparative study. In G. L. Isaac (Ed.), Koobi Fora Research Project, Plio-Pleistocene Archaeology (Vol. 5, pp. 262–362). Oxford: Oxford University Press.Google Scholar
  24. Jones, P. R. (1994). Results of experimental work in relation to the stone industries of Olduvai Gorge. In M. D. Leakey & D. A. Roe (Eds.), Olduvai Gorge. Excavations in Beds III, IV and the Masek Beds, 1968–1971 (pp. 254–298). Cambridge: Cambridge University Press.Google Scholar
  25. Kibunjia, M. (1994). Pliocene archaeological occurrences in the Lake Turkana basin. Journal of Human Evolution, 27, 159–171.CrossRefGoogle Scholar
  26. Le Brun-Ricalens, F. (1989). Contribution à l’étude des pièces esquillées: la présence de percuteurs à “cupules”. Bulletin de la Société préhistorique français, 86, 194–211.Google Scholar
  27. Leakey, M. D. (1971). Olduvai Gorge. Excavations in Beds I and II, 1960–1963 (Vol. 3). Cambridge: Cambridge University Press.Google Scholar
  28. Leakey, M. D., & Roe, D. A. (1994). Olduvai Gorge. Excavations in Beds III, IV and the Masek Beds, 1968-1971 (Vol. 5). Cambridge: Cambridge University Press.Google Scholar
  29. Lepre, C. J. (2014). Early Pleistocene lake formation and hominin origins in the Turkana-Omo rift. Quaternary Science Reviews, 102, 181–191.CrossRefGoogle Scholar
  30. Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J.-P., Texier, P.-J., Lenoble, A., & Feibel, C. S. (2011). An earlier origin for the Acheulian. Nature, 477, 82–85.CrossRefGoogle Scholar
  31. Merrick, H. V., & Merrick, J. P. S. (1976). Archaeological occurrences of earlier Pleistocene Age from the Shungura Formation. In Y. Coppens, F. C. Howell, G. L. Isaac, & R. E. F. Leakey (Eds.), Earliest man and environments in the Lake Rudolf Basin (pp. 574–584). Chicago: University of Chicago Press.Google Scholar
  32. Mora, R., & de la Torre, I. (2005). Percussion tools in Olduvai Beds I and II (Tanzania): Implications for early human activities. Journal of Anthropological Archaeology, 24, 179–192.CrossRefGoogle Scholar
  33. Mourre, V., & Colonge, D. (2010). La question du débitage de grands éclats à l’Acheuléen. In V. Mourre & M. Jarry (Eds.), Entre le marteau et l’enclume. La percussion directe au percuteur dur et la diversité de ses modalités d’application. Actes de la table ronde de Toulouse, 15-17 mars 2004. Paleo 2009-2010, numéro spécial (pp. 35–48).Google Scholar
  34. Quinn, R. L., Lepre, C. J., Feibel, C. S., Wright, J. D., Mortlock, R. A., Harmand, S., Brugal, J.-P., & Roche, H. (2013). Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. Journal of Human Evolution, 65(1), 65–78.CrossRefGoogle Scholar
  35. Roche, H. (2005). From simple flaking to shaping: Stone knapping evolution among early hominids. In V. Roux & B. Bril (Eds.), Stone knapping: The necessary conditions for a uniquely hominid behavior (pp. 35–48). Cambridge: McDonald Institute Monograph Series.Google Scholar
  36. Roche, H. (2011). The archaeology of human origins: The contribution of West Turkana, Kenya. In J. Sept & D. Pilbeam (Eds.), Casting the net wide, papers in honor of Glynn Isaac (pp. 75–92). Cambridge: American School of Prehistoric Research Monograph series, Oxbow Books.Google Scholar
  37. Roche, H., Delagnes, A., Brugal, J.-P., Feibel, C., Kibunjia, M., & Texier, P.-J. (1999). Evidence for early hominids lithic production and technical skill at 2.3 Myr, West Turkana, Kenya. Nature, 399, 57–60.CrossRefGoogle Scholar
  38. Roche, H., Brugal, J.-P., Delagnes, A., Feibel, C., Harmand, S., Kibunjia, M., Prat, S., & Texier, P.-J. (2003). Les sites archéologiques plio-pléistocènes de la formation de Nachukui, Ouest-Turkana, Kenya: Bilan synthétique 1997-2001. Comptes Rendus Palevol, 2, 663–673.CrossRefGoogle Scholar
  39. Roche, H., Blumenschine, R. J., & Shea, J. J. (2009). Origins and adaptations of early genus Homo: What archaeology tells us. In E. Delson & R. MacPhee (Eds.), The first humans: Origin and early evolution of the genus Homo, Vertebrate Paleobiology and Paleoanthropology (pp. 135–147). London: Springer.CrossRefGoogle Scholar
  40. Roda Gilabert, X., Martínez-Moreno, J., & Mora, R. (2012). Pitted stone cobbles in the Mesolithic site of Font del Ros (southeastern Pre-Pyrenees, Spain): Some experimental remarks around a controversial tool type. Journal of Archaeological Science, 39, 1587–1598.CrossRefGoogle Scholar
  41. Semaw, S. (2000). The world’s oldest stone artifacts from Gona, Ethiopia: Their implications for understanding stone technology and patterns of human evolution between 2.6–1.5 million years ago. Journal of Archaeological Science, 27, 1197–1214.CrossRefGoogle Scholar
  42. Semaw, S., Renne, P., Harris, J. W. K., Feibel, C. S., Bernor, R. L., Fesseha, N., & Mowbray, K. (1997). 2.5-million-year-old stone tools from Gona, Ethiopia. Nature, 385, 333–336.CrossRefGoogle Scholar
  43. Semaw, S., Rogers, M. J., & Stout, D. (2009). Insights into Late Pliocene lithic assemblage variability: The East Gona and Ounda Gona South Oldowan archaeology (2.6 million years ago), Afar Ethiopia. In C. Schick & N. Toth (Eds.), The cutting edge: New approaches to the archaeology of human origins (pp. 211–246). Gosport: Stone Age Institute Press.Google Scholar
  44. Stout, D., Semaw, S., Rogers, M. J., & Cauche, D. (2010). Technological variation in the earliest Oldowan from Gona, Afar, Ethiopia. Journal of Human Evolution, 58(6), 474–491.CrossRefGoogle Scholar
  45. Taylor, N., Arroyo, A., Harmand, S., Roche, H., Brenet, M., & Lewis, J. (2015). Multi-functionality and stone tool re-use in the ESA: An example from the Nachukui Formation of West Turkana, Kenya. PaleoAnthropology, A33.Google Scholar
  46. Texier, P.-J., Roche, H., & Harmand, S. (2006). Kokiselei 5, formation de Nachukui, West Turkana (Kenya): Un témoignage de la variabilité ou de l’évolution des comportements techniques au Pléistocène ancien. In Section 15: Préhistoire en Afrique, Acts of the XIVth UISPP Congress, University of Liège, Belgium, 2-8 September 2001 (pp. 11–22). Oxford: BAR International Series 1522.Google Scholar
  47. Toth, N. (1982). The stone technologies of early hominids at Koobi Fora, Kenya: An experimental approach. PhD dissertation, University of California.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UMR 7055, CNRS – Université Paris Nanterre, MAENanterre CedexFrance
  2. 2.Institute of ArchaeologyUniversity College LondonLondonUK
  3. 3.Aix Marseille Université, CNRS, MiC, UMR 7269, LAMPEAAix-en-Provence Cedex 2France
  4. 4.Turkana Basin InstituteStony Brook UniversityStony BrookUSA

Personalised recommendations